Model of jet plasma flow with absorption of a CO_2-laser pulse
Yakovlev V. I.1, Korotaeva T. A.1
1Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: yakovlvi@itam.nsc.ru, korta@itam.nsc.ru
An approach has been developed and numerical simulation of the dynamics of an optical discharge plasma has been carried out on the time scale of absorption of a CO_2-laser pulse. The features of the propagation modes of optical discharges are taken into account: light supported detonation wave (LSDW) and fast ionization wave. A system of hydrodynamic equations with energy sources is used, supplemented by the calculated value of the integral parameter the momentum caused by the microjet flow of the LSDW plasma. A comparison of the results of numerical modeling and visualization of plasma glow shows their close agreement when taking into account the microjet flow. Characteristic trends in the dynamics of the structure and parameters of the plasma in the microsecond range of the laser pulse are determined. Keywords: optical discharge, light supported detonation wave, microjet flow, numerical modeling, plasma glow.
- V.A. Bityurin, V.E. Fortov (ed.). Entsiklopediya nizkotemperaturnoi plazmy. Series B Thematic volume IX-4. Plasmennaya aerodinamika (Yanus-K, M., 2014)
- A.S. Yuryev, S.Yu. Pirogov, E.V. Ryzhov. Upravlenie obtekaniem tel s ispolozovaniem podvoda lasernoy energii v vysokoskorostnye potoki gasa (Professional, SPb, 2005)
- P.Yu. Georgievskij, V.A. Levin. Pis'ma v ZhTF, 14 (8), 684 (1988) (in Russian)
- V.N. Zudov, P.K. Tretyakov, A.V. Tupikin, V.I. Yakovlev. MZhG, 5, 140 (2003) (in Russian)
- V.M. Fomin, V.I. Yakovlev. Energoobmen v sverkhzvukovykh gasoplasmennykh techeniyakh s udarnimy volnami (Fizmatlit, M., 2017)
- Yu.P. Raizer. ZhETF, 48 (5), 1508 (1965) (in Russian)
- V.I. Fisher. ZhTF, 53 (11), 2148 (1983) (in Russian)
- V.I. Fisher. ZhTF, 53 (11), 2143 (1983). (in Russian)
- V.I. Fisher, V.M. Kharash. JETP, 55 (3), 439 (1982)
- V.I. Fisher, V.M. Kharash. JETP, 56 (5), 1004 (1982)
- K. Shimamura, K. Matsui, J.A. Ofosu, I. Yokota, K. Komurasaki. Appl. Phys. Lett., 110, 134104 (2017). https://doi.org/10.1063/1.4979646
- K. Shimamura, I. Yokota, Sh. Yokota. J. Appl. Phys., 126, 243304 (2019). https://doi.org/10.1063/1.5115815
- K. Mori, K. Komurasaki, Y. Arakawa. J. Appl. Phys., 92, 5663 (2002). https://doi.org/10.1063/1.1513869
- K. Mori, K. Komurasaki, Y. Arakawa. Appl. Phys. Lett., 88, 121502 (2006). https://doi.org/10.1063/1.2183812
- V.I. Yakovlev, V.B. Shulyat'ev, M.A. Yadrenkin, T.A. Gimon. Bull. Lebedev Phys. Institute, 50 (10), S1108 (2023). https://doi.org/10.3103/S106833562322013X
- A. Alberti, A. Munafo, M. Koll, M. Nishihara, C. Pantano, J.B. Freund, G.S. Elliott, M. Panesi. J. Phys. D: Appl. Phys., 53, 025201 (2020). https://doi.org/10.1088/1361-6463/ab492a
- S.Y. Pirogov, D.G. Belyanin, A.S. Yuriev, S.V. Leonov, E.V. Ryzhov. Proc. of the 7th Int. Workshop on Magneto-Plasma Aerodynamics. Ed. V.A. Bityurin (Moscow, 122-127, 2007)
- P.D. Thomas. AIAA J., 15 (10), 1405 (1977)
- V.N. Anisimov, V.A. Vorobyov, V.G. Grishina, O.N. Derkach, M.F. Kanevsky, A.Yu. Sebrant, M.A. Stepanova, S.Yu. Chernov. Quant. Electron., 25 (8), 831 (1995). DOI: 10.1070/QE1995v025n08ABEH000481
- T.A. Kiseleva, T.A. Korotaeva, V.I. Yakovlev. Tech. Phys. Lett., 45 (4), 335 (2019). DOI: 10.1134/S1063785019040059
- L.I. Sedov. Metody podobia i razmernosti v mekhanike (Nauka, M., 1987) (in Russian)
- G.I.Kozlov, V.A.Kuznetsov, V.A.Masyukov. ZhETF, 66 (3), 954 (1974) (in Russian)
- G.I. Kozlov, E.P. Stupitsky. Tablitsi termodynamicheskikh parametrov argona i ksenona za padayuschei i otrazhennoy volnoi (IPM AS USSR, M., 1969) (in Russian)
- V.I. Yakovlev. Pis'ma v ZhTF, 27 (9), 13 (2001) (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.