Improving the ion thruster diagram I. Dependence of efficiency parameters on the value of magnetic field induction
Fedyanin N. K.1, Selivanov M. Y.1, Kravchenko D. A.1, Sabitova A. V.1
1 Joint Stock Company Keldysh State Research Center (JSC Keldysh Research Center), Moscow, Russia
Email: nikita.fedyanin@gmail.com

PDF
The current article describes the results of studies of the dependence of the efficiency parameters of an ion thruster on the magnitude of the magnetic field induction in a discharge chamber with ionization of the propellant in a direct current discharge. As part of the work, fire tests were carried out on an ion thruster with various configurations of the magnetic system, differing in the magnitude of the magnetic field induction, but having a single topology. Based on the test results, efficiency curves and radial distributions of the ion beam current density for the studied configurations were obtained. Based on the data obtained, the dependences of the efficiency parameters of the ion thruster on the magnitude of the magnetic field induction were formulated. An increase in the induction value in the discharge chamber corresponded to an increase in the discharge voltage, as well as a decrease in the uniformity of the distribution of the ion beam current density and the ion cost. The results of the work are fully consistent with earlier studies. Keywords: electric propulsion, discharge chamber, ion optics, ion beam, ion cost, mass utilization efficiency.
  1. R.J. Jahn. Physics of Electric Propulsion (Mc-Graw Hill Book Company, NY., St. Louis, San-Francisco, Toronto, London, Sydney, 1968)
  2. M. Sangregorio, K. Xie, N. Wang, N. Guo, Z. Zhang. Chinese J. Aeronautics, 31 (8), 1635 (2018). DOI: 10.1016/j.cja.2018.06.005
  3. D.R. Lev, I.G. Mikellides, D. Pedrini, D.M. Goebel, B.A. Jorns, M.S. McDonald. Rev. Modern Plasma Phys., 3 (1), Art. Num. 6 (2019). DOI: 10.1007/s41614-019-0026-0
  4. D.M. Goebel, I. Katz. Fundamentals of Electric Propulsion (John Wiley \& Sons, Inc., 2008), DOI: 10.1002/9780470436448
  5. A. Sengupta. J. Appl. Phys., 105 (9), 093303 (2009). DOI: 10.1063/1.3106087
  6. T. Ogunjobi, J.A. Menart. Computational Study of Ring-Cusp Magnet Configurations that Provide Maximum Electron Confinement. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2006-4489, 2006. DOI: 10.2514/6.2006-4489
  7. R.E. Wirz, D.M. Goebel. Ion Thruster Discharge Performance per Magnetic Field Topography. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2006-4487, 2006. DOI: 10.2514/6.2006-4487
  8. S. Mahalingam, J.A. Menart. Computational Model Tracking Primary Electrons, Secondary Electrons and Ions in the Discharge Chamber of an Ion Engine. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2005-4253, 2005. DOI: 10.2514/6.2005-4253
  9. R.E. Wirz. Discharge Plasma Processes of Ring-Cusp Ion Thrusters. Dissertation, 2005
  10. S. Mahalingam, J.A. Menart. Physical Parametric Studies in an Ion Engine Discharge Chamber Using a PIC-MCC Simulation. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2008-4733, 2008. DOI: 10.2514/6.2008-4733
  11. D.A. Kravchenko, A.A. Shagayda, M.Y. Selivanov, A.S. Shashkov, D.Y. Tomilin, I.A. Khmelevskoi, A.S. Lovtsov. J. Propulsion Power, 38 (12), 1 (2022). DOI: 10.2514/1.B38405
  12. B. Bias, B. Penkal, M. Jonell, J.A. Menart, S. Mahalingam. Off Design Simulation Results of Several Operating Conditions of the NEXT Discharge Chamber. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2011-5660, 2011. DOI: 10.2514/6.2011-5660
  13. W. Bennett, T. Ogunjobi, J.A. Menart. Computational Study of the Effects of Cathode Placement, Electron Energy, and Magnetic Field Strength on the Confinement of Electrons. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2007-5248, 2007. DOI: 10.2514/6.2007-5248
  14. D.M. Goebel, J.E. Polk, A. Sengupta. Discharge Chamber Performance of the NEXIS Ion Thruster. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-3813, 2004. DOI: 10.2514/6.2004-3813
  15. J.R. Beattie, J.N. Matossian. Inert-gas Ion Thruster Technology. NASA Contract Report, NAS 3-23860, 1992
  16. A. Sengupta. Experimental Investigation of Discharge Plasma Magnetic Confinement in the NSTAR Ion Thruster. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2005-4069, 2005. DOI: 10.2514/6.2005-4069
  17. S. Deshpande, S. Mahalingam, J.A. Menart. Computational Study of Primary Electrons in the Cusp Region of an Ion Engine's Discharge Chamber. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-4109, 2004. DOI: 10.2514/6.2004-4109
  18. S. Mahalingam, J.A. Menart. J. Propulsion Power, 23 (1), 69 (2007). DOI: 10.2514/1.18366
  19. S. Mahalingam, J.A. Menart. Primary Electron Modeling in the Discharge Chamber of an Ion Engine. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2002-4262, 2002. DOI: 10.2514/6.2002-4262
  20. R.E. Wirz, D.M. Goebel. Plasma Sources Sci. Technol., 17 (3), 035010 (2008). DOI: 10.1088/0963-0252/17/3/035010
  21. D.M. Goebel, J.E. Polk, I. Sandler, I.G. Mikellides, J.R. Brophy, W.G. Tighe, K. Chien. Evaluation of 25-cm XIPS Thruster Life for Deep Space Mission Applications. 36th International Electric Propulsion Conf., 2009-152, 2009
  22. J.R. Anderson, J.S. Snyder, J.L. Van Noord, G.C. Soulas. Thermal Development Test of the NEXT PM1 Ion Engine. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2007-5217, 2007. DOI: 10.2514/6.2007-5217
  23. J.E. Polk, D.M. Goebel, J.S. Snyder, A.C. Schneider, L.K. Johnson, A. Sengupta. Rev. Scientif. Instrum., 83 (7), 073306 (2012). DOI: 10.1063/1.4728415
  24. A.S. Lovtsov, D.A. Kravchenko, D.A. Tomilin, A.A. Shagaida. Fizika Plazmy, 48 (9), 792 (2022) (in Russian). DOI: 10.31857/S0367292122600339
  25. B. Dankongkakul, R.E. Wirz. Plasma Sources Sci. Technol., 27 (12), 125001 (2018). DOI: 10.1088/1361-6595/aae63c
  26. S.A. Samples, R.E. Wirz. Development Status of the Miniature Xenon Ion Thruster. 36th International Electric Propulsion Conf., 2019-143, 2019
  27. S.A. Samples, R.E. Wirz. Plasma Research Express, 2 (2), 025008 (2020). DOI: 10.1088/2516-1067/ab906d
  28. J.R. Beattie, J.N. Matossian. R.R. Robson. J. Propulsion Power, 6 (2), 145 (1990). DOI: 10.2514/3.23236
  29. K. Chien, S.L. Hart, W.G. Tighe, M.K. De Pano, T.A. Bond, R. Spears. Development Status of the Miniature Xenon Ion Thruster. 29th International Electric Propulsion Conf., 2005-315, 2005
  30. J. Foster, G. Soulas, M. Patterson. Plume and Discharge Plasma Measurements of an NSTAR-type ion thruster. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2000-3812, 2000. DOI: 10.2514/6.2000-3812
  31. D.A. Herman. The Use of Electrostatic Probes to Characterize the Discharge Plasma Structure and Identify Discharge Cathode Erosion Mechanisms in Ring-Cusp Ion Thrusters. Dissertation, 2005
  32. A. Sengupta, D.M. Goebel, A. Owens. Neutral Density Measurements in an NSTAR Ion Thruster. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2006-4491, 2006. DOI: 10.2514/6.2006-4491
  33. R.E. Wirz, D.M. Goebel. Plasma Sources Sci. Technol., 17 (3), 035010 (2008). DOI: 10.1088/0963-0252/17/3/035010
  34. T.M. Randolph, J.E. Polk. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-3450, 2004. DOI: 10.2514/6.2004-3450
  35. A.W. Hoskins, F.C. Wilson, M.J. Patterson, G.C. Soulas, J. Polaha, L. Talerico, J. Sovey. Development of a Prototype Model Ion Thruster for the NEXT System. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-4111, 2004. DOI: 10.2514/6.2004-4111
  36. S. Mahalingam, Y. Choi, J. Loverich, P.H. Stoltz, B. Bias, J.A. Menart. Fully Coupled Electric Field/PIC-MCC Simulation Results of the Plasma in the Discharge Chamber of an Ion Engine. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2011-6071, 2011. DOI: 10.2514/6.2011-6071
  37. H. Yoshida, H. Kawauchi, S. Takama, T. Maeda, T. Higuchi, K. Akai, Y. Hayakawa, K. Miyazaki, S. Kitamura, H. Nagano. Performance Characteristics of a 35-cm Diameter Xenon Ion Thruster. 32nd Joint Propulsion Conf. and Exhibit, 1996-2714, 1996. DOI: 10.2514/6.1996-2714
  38. Y. Hayakawa, H. Yoshida, S. Kitamura, K. Kajiwara, Y. Ohkawa. Status of the 150-mN Ion Engine Research at JAXA. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-3969, 2004. DOI: 10.2514/6.2004-3969
  39. S. Kitamura, Y. Ohkawa, Y. Hayakawa, H. Yoshida, K. Miyazaki. Overview and Research Status of the JAXA 150-mN Ion Engine. 57th International Astronautical Congress, IAC-06-C4.4.1, 2006. DOI: 10.2514/6.iac-06-c4.4.01
  40. S. Kitamura, Y. Ohkawa, Y. Hayakawa, H. Yoshida, K. Miyazaki. Acta Astronautica, 61 (1-6), 360 (2007). DOI: 10.1016/j.actaastro.2007.01.010
  41. M.Y. Selivanov, A.S. Lovtsov. IT-200PM Ring-Cusp Ion Thruster. 36th International Electric Propulsion Conf., 2019-339, 2019
  42. M. Coletti, N. Wallace, S.B. Gabriel, D. Frollani, H. Simpson. Ring Cusp Ion Engine Development in the UK. 30th International Electric Propulsion Conf., 2015-130, 2015
  43. V.V. Koshlakov, K.V. Gotovtsev, L.E. Zakharenkov, A.V. Karevskiy, E.N. Kiryushin, A.S. Lovtsov, Yu.A. Oshev, A.V. Semenkin, A.E. Solodukhin, S.Yu. Fedotov, S.Yu. Fedyunin, A.G. Tsvetkov. Space Engineering Technol., 1 (36), 80 (2022). DOI: 10.33950/spacetech-2308-7625-2022-1-80-95

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru