Improving the ion thruster diagram I. Dependence of efficiency parameters on the value of magnetic field induction
Fedyanin N. K.1, Selivanov M. Y.1, Kravchenko D. A.1, Sabitova A. V.1
1 Joint Stock Company Keldysh State Research Center (JSC Keldysh Research Center), Moscow, Russia
Email: nikita.fedyanin@gmail.com
The current article describes the results of studies of the dependence of the efficiency parameters of an ion thruster on the magnitude of the magnetic field induction in a discharge chamber with ionization of the propellant in a direct current discharge. As part of the work, fire tests were carried out on an ion thruster with various configurations of the magnetic system, differing in the magnitude of the magnetic field induction, but having a single topology. Based on the test results, efficiency curves and radial distributions of the ion beam current density for the studied configurations were obtained. Based on the data obtained, the dependences of the efficiency parameters of the ion thruster on the magnitude of the magnetic field induction were formulated. An increase in the induction value in the discharge chamber corresponded to an increase in the discharge voltage, as well as a decrease in the uniformity of the distribution of the ion beam current density and the ion cost. The results of the work are fully consistent with earlier studies. Keywords: electric propulsion, discharge chamber, ion optics, ion beam, ion cost, mass utilization efficiency.
- R.J. Jahn. Physics of Electric Propulsion (Mc-Graw Hill Book Company, NY., St. Louis, San-Francisco, Toronto, London, Sydney, 1968)
- M. Sangregorio, K. Xie, N. Wang, N. Guo, Z. Zhang. Chinese J. Aeronautics, 31 (8), 1635 (2018). DOI: 10.1016/j.cja.2018.06.005
- D.R. Lev, I.G. Mikellides, D. Pedrini, D.M. Goebel, B.A. Jorns, M.S. McDonald. Rev. Modern Plasma Phys., 3 (1), Art. Num. 6 (2019). DOI: 10.1007/s41614-019-0026-0
- D.M. Goebel, I. Katz. Fundamentals of Electric Propulsion (John Wiley \& Sons, Inc., 2008), DOI: 10.1002/9780470436448
- A. Sengupta. J. Appl. Phys., 105 (9), 093303 (2009). DOI: 10.1063/1.3106087
- T. Ogunjobi, J.A. Menart. Computational Study of Ring-Cusp Magnet Configurations that Provide Maximum Electron Confinement. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2006-4489, 2006. DOI: 10.2514/6.2006-4489
- R.E. Wirz, D.M. Goebel. Ion Thruster Discharge Performance per Magnetic Field Topography. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2006-4487, 2006. DOI: 10.2514/6.2006-4487
- S. Mahalingam, J.A. Menart. Computational Model Tracking Primary Electrons, Secondary Electrons and Ions in the Discharge Chamber of an Ion Engine. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2005-4253, 2005. DOI: 10.2514/6.2005-4253
- R.E. Wirz. Discharge Plasma Processes of Ring-Cusp Ion Thrusters. Dissertation, 2005
- S. Mahalingam, J.A. Menart. Physical Parametric Studies in an Ion Engine Discharge Chamber Using a PIC-MCC Simulation. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2008-4733, 2008. DOI: 10.2514/6.2008-4733
- D.A. Kravchenko, A.A. Shagayda, M.Y. Selivanov, A.S. Shashkov, D.Y. Tomilin, I.A. Khmelevskoi, A.S. Lovtsov. J. Propulsion Power, 38 (12), 1 (2022). DOI: 10.2514/1.B38405
- B. Bias, B. Penkal, M. Jonell, J.A. Menart, S. Mahalingam. Off Design Simulation Results of Several Operating Conditions of the NEXT Discharge Chamber. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2011-5660, 2011. DOI: 10.2514/6.2011-5660
- W. Bennett, T. Ogunjobi, J.A. Menart. Computational Study of the Effects of Cathode Placement, Electron Energy, and Magnetic Field Strength on the Confinement of Electrons. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2007-5248, 2007. DOI: 10.2514/6.2007-5248
- D.M. Goebel, J.E. Polk, A. Sengupta. Discharge Chamber Performance of the NEXIS Ion Thruster. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-3813, 2004. DOI: 10.2514/6.2004-3813
- J.R. Beattie, J.N. Matossian. Inert-gas Ion Thruster Technology. NASA Contract Report, NAS 3-23860, 1992
- A. Sengupta. Experimental Investigation of Discharge Plasma Magnetic Confinement in the NSTAR Ion Thruster. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2005-4069, 2005. DOI: 10.2514/6.2005-4069
- S. Deshpande, S. Mahalingam, J.A. Menart. Computational Study of Primary Electrons in the Cusp Region of an Ion Engine's Discharge Chamber. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-4109, 2004. DOI: 10.2514/6.2004-4109
- S. Mahalingam, J.A. Menart. J. Propulsion Power, 23 (1), 69 (2007). DOI: 10.2514/1.18366
- S. Mahalingam, J.A. Menart. Primary Electron Modeling in the Discharge Chamber of an Ion Engine. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2002-4262, 2002. DOI: 10.2514/6.2002-4262
- R.E. Wirz, D.M. Goebel. Plasma Sources Sci. Technol., 17 (3), 035010 (2008). DOI: 10.1088/0963-0252/17/3/035010
- D.M. Goebel, J.E. Polk, I. Sandler, I.G. Mikellides, J.R. Brophy, W.G. Tighe, K. Chien. Evaluation of 25-cm XIPS Thruster Life for Deep Space Mission Applications. 36th International Electric Propulsion Conf., 2009-152, 2009
- J.R. Anderson, J.S. Snyder, J.L. Van Noord, G.C. Soulas. Thermal Development Test of the NEXT PM1 Ion Engine. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2007-5217, 2007. DOI: 10.2514/6.2007-5217
- J.E. Polk, D.M. Goebel, J.S. Snyder, A.C. Schneider, L.K. Johnson, A. Sengupta. Rev. Scientif. Instrum., 83 (7), 073306 (2012). DOI: 10.1063/1.4728415
- A.S. Lovtsov, D.A. Kravchenko, D.A. Tomilin, A.A. Shagaida. Fizika Plazmy, 48 (9), 792 (2022) (in Russian). DOI: 10.31857/S0367292122600339
- B. Dankongkakul, R.E. Wirz. Plasma Sources Sci. Technol., 27 (12), 125001 (2018). DOI: 10.1088/1361-6595/aae63c
- S.A. Samples, R.E. Wirz. Development Status of the Miniature Xenon Ion Thruster. 36th International Electric Propulsion Conf., 2019-143, 2019
- S.A. Samples, R.E. Wirz. Plasma Research Express, 2 (2), 025008 (2020). DOI: 10.1088/2516-1067/ab906d
- J.R. Beattie, J.N. Matossian. R.R. Robson. J. Propulsion Power, 6 (2), 145 (1990). DOI: 10.2514/3.23236
- K. Chien, S.L. Hart, W.G. Tighe, M.K. De Pano, T.A. Bond, R. Spears. Development Status of the Miniature Xenon Ion Thruster. 29th International Electric Propulsion Conf., 2005-315, 2005
- J. Foster, G. Soulas, M. Patterson. Plume and Discharge Plasma Measurements of an NSTAR-type ion thruster. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2000-3812, 2000. DOI: 10.2514/6.2000-3812
- D.A. Herman. The Use of Electrostatic Probes to Characterize the Discharge Plasma Structure and Identify Discharge Cathode Erosion Mechanisms in Ring-Cusp Ion Thrusters. Dissertation, 2005
- A. Sengupta, D.M. Goebel, A. Owens. Neutral Density Measurements in an NSTAR Ion Thruster. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2006-4491, 2006. DOI: 10.2514/6.2006-4491
- R.E. Wirz, D.M. Goebel. Plasma Sources Sci. Technol., 17 (3), 035010 (2008). DOI: 10.1088/0963-0252/17/3/035010
- T.M. Randolph, J.E. Polk. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-3450, 2004. DOI: 10.2514/6.2004-3450
- A.W. Hoskins, F.C. Wilson, M.J. Patterson, G.C. Soulas, J. Polaha, L. Talerico, J. Sovey. Development of a Prototype Model Ion Thruster for the NEXT System. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-4111, 2004. DOI: 10.2514/6.2004-4111
- S. Mahalingam, Y. Choi, J. Loverich, P.H. Stoltz, B. Bias, J.A. Menart. Fully Coupled Electric Field/PIC-MCC Simulation Results of the Plasma in the Discharge Chamber of an Ion Engine. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2011-6071, 2011. DOI: 10.2514/6.2011-6071
- H. Yoshida, H. Kawauchi, S. Takama, T. Maeda, T. Higuchi, K. Akai, Y. Hayakawa, K. Miyazaki, S. Kitamura, H. Nagano. Performance Characteristics of a 35-cm Diameter Xenon Ion Thruster. 32nd Joint Propulsion Conf. and Exhibit, 1996-2714, 1996. DOI: 10.2514/6.1996-2714
- Y. Hayakawa, H. Yoshida, S. Kitamura, K. Kajiwara, Y. Ohkawa. Status of the 150-mN Ion Engine Research at JAXA. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-3969, 2004. DOI: 10.2514/6.2004-3969
- S. Kitamura, Y. Ohkawa, Y. Hayakawa, H. Yoshida, K. Miyazaki. Overview and Research Status of the JAXA 150-mN Ion Engine. 57th International Astronautical Congress, IAC-06-C4.4.1, 2006. DOI: 10.2514/6.iac-06-c4.4.01
- S. Kitamura, Y. Ohkawa, Y. Hayakawa, H. Yoshida, K. Miyazaki. Acta Astronautica, 61 (1-6), 360 (2007). DOI: 10.1016/j.actaastro.2007.01.010
- M.Y. Selivanov, A.S. Lovtsov. IT-200PM Ring-Cusp Ion Thruster. 36th International Electric Propulsion Conf., 2019-339, 2019
- M. Coletti, N. Wallace, S.B. Gabriel, D. Frollani, H. Simpson. Ring Cusp Ion Engine Development in the UK. 30th International Electric Propulsion Conf., 2015-130, 2015
- V.V. Koshlakov, K.V. Gotovtsev, L.E. Zakharenkov, A.V. Karevskiy, E.N. Kiryushin, A.S. Lovtsov, Yu.A. Oshev, A.V. Semenkin, A.E. Solodukhin, S.Yu. Fedotov, S.Yu. Fedyunin, A.G. Tsvetkov. Space Engineering Technol., 1 (36), 80 (2022). DOI: 10.33950/spacetech-2308-7625-2022-1-80-95
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.