A spiral long-periodic structure of the turbulent flow core in a heated rectangular duct with inclined ribs at a wall
Galaev S. A. 1, Levchenya A.M. 1, Ris V. V. 1, Smirnov E. M. 1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: sealga@mail.ru, levchenya@yandex.ru, vvris@yandex.ru, emsmirnov2003@mail.ru

PDF
Paper presents the results of the numerical modeling of the turbulent airflow in a rectangular duct 50 caliber length, on one wall of which straight ribs inclined to the axis of the channel at an angle of 45o are periodically located. The simulation covered the range of the Reynolds number from 104 to 2· 105. It has been established that with all Re number values the long areas of statistically stationary spiral flow are formed. Specific phases of the spiral flow structures formation have been identified as they developed from the channel entrance. It is shown that the parameters (friction and heat transfer) of the flow with developed spiral structures are close to the parameters of the spatially periodic flow with the same Re number. The presence of specific phases of the spiral flow formation obtained in a numerical modeling are confirmed with the presented in the literature results of physical experiments. Keywords: ribbed duct, turbulent flow, entry region, spiral flow, heat transfer.
  1. E.K. Kalinin, G.A. Dreitser, I.Z. Kopp, A.S. Myakotchin. Efficient surfaces for heat exchangers: fundamental and design (Begell, 2002), 392 p. DOI: 10.1615/978-1-56700-167-9.0
  2. V.I. Terekhov, A.Yu. Dyachenko, Y.J. Smulsky, T.V. Bogatko, N.I. Yarygina. Heat transfer in subsonic separated flows (Springer, 2022), 230 p
  3. J.-C. Han, S. Dutta, S. Ekkad. Gas Turbine Heat Transfer and Cooling Technology (CRC Press, 2013), 865 p
  4. M.K. Dwivedi, M. Choudhary. Mater. Today: Proceedings, 63, 272 (2022). https://doi.org/10.1016/j.matpr.2022.03.072
  5. I. Baybuzenko. Proceedings of the ASME. Turbo Expo 2021. (2021) 5B. https://doi.org/10.1115/GT2021-00259
  6. V.V. Ris, S.A. Galaev, A.M. Levchenya, I.B. Pisarevsky. Teploenergetika 2, 80 (2024) (in Russian). DOI: 10.56304/S0040363624020085
  7. A.P. Rallabandi, H. Yang, J. Han. J. Heat Transfer, 131, 071703 (2009). https://doi.org/10.1115/1.3090818
  8. G. Tanda, R. Abram. J. Turbomachinery, 131, 021012-1 (2009). DOI: 10.1115/1.2987241
  9. M. Molki, E.M. Sparrow. J. Heat Transfer, 108, 482 (1986)
  10. F. Menter, M. Kuntz, R. Langtry. Turbulence, Heat and Mass Transfer 4 (Begell House Inc., 2003), p. 625-632
  11. L.G. Loytsiansky, Mekhanika zhidkosti i gaza (Drofa, M., 2003), 840 s. (in Russian).
  12. T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt. Fundamentals of Heat and Mass Transfer (John Wiley \& Sons., 2011), 1076 p
  13. B.S. Petukhov, V.V. Kirillov. Teploenergetika 4, 63 (1958) (in Russian)
  14. A.M. Levchenya, S.A. Galaev, V.V. Ris. Nauchno-tekhnicheskie vedomosti St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 17 (4), (2024) DOI: https://doi.org/10.18721/JPM.17403 (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru