Sputtering coefficient calculation during light atoms bombardment of the solid targets
Zinoviev A. N.1, Babenko P. Yu.1, Mikhailov V. S.1, Smaev A.V.1
1Ioffe Institute, St. Petersburg, Russia
Email: zinoviev@inprof.ioffe.ru, babenko@npd.ioffe.ru, chiro@bk.ru, rex.smaev@mail.ru
A method for calculating the sputtering coefficient of targets during bombardment with light atoms is proposed. It is shown that taking into account the energy spectrum of reflected particles makes it possible to adequately describe the behavior of the sputtering coefficient near the threshold. At high energies, the particle reflection coefficient decreases greatly and the cascade sputtering mechanism proposed by Sigmund is added. Taking into account the contribution of both mechanisms makes it possible to achieve a quantitative description of the dependence of the sputtering coefficient in a wide range of energies of incident particles. Keywords: sputtering thresholds, sputtering coefficient, ion bombardment, ITER tokamak.
- R. Behrisch. Sputtering by Particle Bombardment I. Physical Sputtering of Single-Element Solids (Springer, Berlin, 1981), DOI: 10.1007/3-540-10521-2
- R. Behrisch. Sputtering by Particle Bombardment II. Sputtering of Alloys and Compounds, Electron and Neutron Sputtering, Surface Topography (Springer, Berlin, 1983), DOI: 10.1007/3-540-12593-0
- R. Behrisch. Sputtering by Particle Bombardment III. Characteristics of Sputtered Particles, Technical Applications (Springer, Berlin, 1991), DOI: 10.1007/3-540-53428-8
- R. Behrisch, W. Eckstein. Sputtering by Particle Bombardment (Springer, Berlin, 2007), DOI: 10.1007/978-3-540-44502-9
- N.V. Pleshivtsev, A.I. Bazhin. Fizika vozdejstviya ionnykh puchkov na materialy (Vuzovskaya kniga, M., 1998) (in Russian)
- E.S. Mashkova. Sovremennye tendencii v issledovanii raspyleniya tverdyh tel. V kn.: Fundamental'nye i prikladnye aspekty raspyleniya tverdykh tel: Sb. statey 1986-1987 : Per. s angl. E.S. Mashkova (Mir, Moscow, 1989) (in Russian)
- E.S. Mashkova, V.A. Molchanov. Rad. Eff., 108, 307 (1989). DOI: 10.1080/10420158908230319
- P. Sigmund. Phys. Rev., 184, 383 (1969). DOI: 10.1103/PhysRev.184.383
- G. Falcone. La Rivista del Nuovo Cimento, 13, 1 (1990). DOI: 10.1007/bf02742981
- R. Behrisch, G. Maderlechner, B.M.U. Schemer, M.T. Robinson. Appl. Phys., 18, 391 (1979). DOI: 10.1007/BF00899693
- J.P. Biersack, W. Eckstein. Appl. Phys. A., 34, 73 (1984). DOI: 10.1007/bf00614759
- A.P. Mika, P. Rousseau, A. Domaracka, B.A. Huber. Phys. Rev. B, 100 (7), 075439 (2019). DOI: 10.1103/PhysRevB.100.075439
- K. Schlueter, K. Nordlund, G. Hobler, M. Balden, F. Granberg, O. Flinck, T.F. da Silva, R. Neu. Phys. Rev. Lett., 125, 225502 (2020) DOI: 10.1103/PhysRevLett.125.225502
- A. Tolstogouzov, P. Mazarov, A.E. Ieshkin, S.F. Belykh, N.G. Korobeishchikov, V.O. Pelenovich, D.J. Fu. Vacuum, 188, 110188 (2021). DOI: 10.1016/j.vacuum.2021.110188
- F. Duensing, F. Hechenberger, L. Ballauf, A.M. Reider, A. Menzel, F. Zappa, T. Dittmar, D.K. Bohme, P. Scheier. Nucl. Mater. Energy, 30, 101110 (2022). DOI: 10.1016/j.nme.2021.101110
- A. Lopez-Cazalilla, F. Granberg, K. Nordlund, C. Cupak, M. Fellinger, F. Aumayr, W. Hauptstra, P.S. Szabo, A. Mutzke, R. Gonzalez-Arrabal. Phys. Rev. Materials, 6, 075402 (2022). DOI: 10.1103/PhysRevMaterials.6.075402
- P. Phadke, A.A. Zameshin, J.M. Sturm, R. van de Kruijs, F. Bijkerk. Nucl. Instrum. Methods Phys. Res. B, 520, 29 (2022). DOI: 10.1016/j.nimb.2022.03.016
- N.N. Andrianova, A.M. Borisov, E.S. Mashkova, A.A. Shemukhin, V.I. Shulga, Yu.S. Virgiliev. Nucl. Instr. Meth. Phys. Res. B., 354, 146 (2015). DOI: 10.1016/j.nimb.2014.11.071
- N.N. Andrianova, A.M. Borisov, E.S. Mashkova, V.I. Shulga. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 10, 412 (2016). DOI: 10.1134/S1027451016020233
- V.I. Shulga. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 14, 1346 (2016). DOI: 10.1134/S1027451020060440
- N.N. Andrianova, A.M. Borisov, M.A. Ovchinnikov, R.Kh. Khisamov, R.R. Mulyukov. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 18, 305 (2024). DOI: 10.1134/S1027451024020046
- D.G. Bulgadaryan, D.N. Sinel'nikov, N.E. Efimov, V.A. Kurnaev. Bull. Russ. Acad. Sci.: Phys., 84, 742 (2020). DOI: 10.3103/S1062873820060064
- V.A. Kurnaev, D.K. Kogut, N.N. Trifonov. J. Nucl. Mater., 415, S1119 (2011). DOI: 10.1016/j.jnucmat.2010.09.035
- V.S. Mikhailov, P.Yu. Babenko, A.P. Shergin, A.N. Zinoviev. Plasma Phys. Reports, 50, 23 (2024). DOI: 10.1134/S1063780X23601682
- W. Eckstein. Computer Simulation of Ion-Solid Interactions (Springer-Verlag, Berlin, 1991), DOI: 10.1007/978-3-642-73513-4
- P.Yu. Babenko, V.S. Mikhailov, A.P. Shergin, A.N. Zinoviev. Tech. Phys., 68 (5), 662 (2023). DOI: 10.21883/TP.2023.05.56074.12-23
- V.S. Mikhailov, P.Yu. Babenko, A.P. Shergin, A.N. Zinoviev. JETP, 137, 413 (2023). DOI: 10.1134/S106377612309011X
- V.S. Mikhailov, P.Yu. Babenko, D.S. Tensin, A.N. Zinoviev. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 17, 258 (2023). DOI: 10.1134/S1027451023010330
- C. Kittel. Introduction to Solid State Physics. 8th edition (Wiley, NY., 2005)
- P.Yu. Babenko, V.S. Mikhailov, A.N. Zinoviev. Pisma v JTF, 50, 3 (2024) (in Russian). DOI: 10.61011/PJTF.2024.12.58055.19851
- D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, K. Nordlund, A.N. Zinoviev. Nucl. Instrum. Methods Phys. Res. B, 460, 4 (2019). DOI: 10.1016/j.nimb.2019.03.037
- A.N. Zinoviev, P.Yu. Babenko, K. Nordlund. Nucl. Instrum. Methods Phys. Res. B, 508, 10 (2021). DOI: 10.1016/j.nimb.2021.10.001
- V.S. Mikhailov, P.Yu. Babenko, A.P. Shergin, A.N. Zinoviev. ZhTF, 93 (11), 1533 (2023) (in Russian). DOI: 10.21883/JTF.2023.11.56484.192-23
- J.F. Ziegler, J.P. Biersack. SRIM. http://www.srim.org.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.