Fundamental and regular transport solutions of Maxwell's equations and their properties at superluminal speeds: shock electromagnetic waves
L.A. Alexeyeva1, Kanymgazieva I.A.2
1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
2L.N. Gumilyov Eurasian National University Astana, Kazakhstan
Email: alexeeva47@mail.ru

PDF
Transport solutions of Maxwell's equations under the action of moving emitters of electromagnetic waves moving with a constant velocity in a fixed direction are considered. Using the Fourier transform of generalized functions, fundamental and generalized solutions are constructed for velocities exceeding the velocity of electromagnetic wave propagation in a medium and coinciding with it, which is called the light velocity. Their regular integral representations are given in analytical form. Construction of solutions for arbitrary moving sources is based on the property of convolution of fundamental solutions of differential equations with the right-hand side. It is shown that shock electromagnetic waves arise at such velocities. Using the method of generalized functions, conditions are obtained for jumps in electromagnetic field strengths at shock wave fronts. It is shown that shock electromagnetic waves are transverse, and the vectors of electric and magnetic strength are orthogonal to each other and lie in the tangent bundle to the shock wave front. Keywords: Maxwell's equations, light speed , motion speed, Mach number, Green's tensor, generalized solutions, shock electromagnetic waves, conditions on the fronts.
  1. J.C. Maxwell. A Traktat ob elektrichestve i magnetizme (Nauka, M., 1989), t. 1,2. (in Russian)
  2. Dzh. Dzhekson. Classicheskay elektrodinamika (Mir, M. 1965) (in Russian)
  3. I.I. Tamm. Osnovy teorii elektrichestva (Nauka, M. 1976) (in Russian)
  4. R. Feynman, R. Leighton., M. Sands. Feynmanovskie lektsii po fizike --- Elektrichestvo i magnetizm (Mir, M., 1965), t. 5 (in Russian)
  5. R. Feynman, R. Leighton., M. Sands. Feynmanovskie lektsii po fizike --- Elektrodinamika (Mir, M., 1966), t. 6 (in Russian)
  6. L.D. Landau, E.M. Lifshitz. Teoriya polya. Teoreticheskaya fizika (Fizmatlit, M., 2003), Vol. 2 (in Russian)
  7. I.V. Saveliev. Kurs obshchei fiziki. Elektrichestvo (Nauka, M., 1970), t. 2 (in Russian)
  8. V.L. Ginzburg, V.N. Cytovich. Perekhodnoe izluchenie i perekhodnoe rasseyanie (Nauka, M., 1984) (in Russian)
  9. J. Heras. Phys. Lett., 237 (6), 343 (1998). https://doi.org/10.1016/s0375-9601(98)00734-8
  10. A. Heras. Am. J. Phys., 62 (12), 11091115 (1994). https://doi.org/10.1119/1.17759
  11. J.A. Heras. Phys. Lett., A, 249 (1), 1 (1998). https://doi.org/10.1016/S0375-9601(98)00712-9
  12. O. Dushek, S.V. Kuzmin. Europ. J. Phys., 25 (3), (2004). DOI: 10.1088/0143-0807/25/3/001
  13. V. Hnizdo. Eur. J. Phys., 25, 351 (2004). DOI: 10.1088/0143-0807/25/3/002
  14. S.S. Sautbekov, K.N. Baysalova, Y.K. Sirenko. AIP Advances 11, 105012 (2021)
  15. L.A. Alekseeva, I.A. Kanymgazieva. ZhTF, 94 (4), 539 (2024) (in Russian). DOI: 10.61011/JTF.2024.04.57523.174-23
  16. V.S. Vladimirov. Uravneniya matematicheskoy fiziki (Nauka, M., 1981) (in Russian)
  17. V.S. Vladimirov. Obobshchennye funkcii v matematicheskoj fizike (Nauka, M., 1979) (in Russian)
  18. L.A. Alekseyeva. Matematicheskiy zhurnal, 6 (1), 16 (2006) (in Russian)
  19. L.A. Alexeyeva. Boundary integral equations of nonstationary BVP for wave equations Book of abstracts. Int. Congress of Mathematicians (Madrid, 2006), p. 436
  20. L.A. Alexeyeva. Comp. Mathem. Mathem. Phys., 42 (1), 75 (2002)
  21. P.A. Cherenkov. UFN, 93, 385 (1967) (in Russian)
  22. I.E. Tamm, I.M. Frank. DAN USSR, 14 (e3), 107 (1937) (in Russian)
  23. J. Jelley. Cherenkovskoe izluchenie (IL, M., 1960) (in Russian)
  24. V.P. Zrelov. Izluchenie Vavilova-Cherenkova i ego primenenie v fizike vysokih energiy (Atomizdat, M., 1968) (in Russian)
  25. L.A. Alekseyeva. Differentsial'nyye uravneniya, 46 (4), 512 (2010) (in Russian)
  26. L.A. Alekseyeva. Differentsial'nyye uravneniya, 53 (3), 327 (2017) (in Russian)
  27. L.A. Alexeyeva. General Functions Method in Transport Boundary Value Problems of Elasticity Theory / Intech Open. In the Book Differential equations. Theory and current researches. Ch. 8, 129 (2018)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru