Ab initio Calculations of the Electronic Structure of the Doublet and Quartet States of the Rubidium Trimer
Bormotova E.A. 1, Likharev A.S.1, Stolyarov A.V. 1
1Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
Email: bormotova.e.a@gmail.com, avstol@gmail.com

Systematic quantum chemical calculations were performed for the ground and a number of low-lying electronically excited doublet and quartet states of the rubidium trimer molecule. The obtained potential energy surfaces (PES), spin-orbit couplings (SOC) and electronic transition dipole moments (ETDM) can be useful for optimizing paths for laser synthesis, cooling and manipulation of stable ensembles of Rb3 molecules at ultralow temperatures. Ab initio calculations of the electronic structure of the homonuclear Rb3 molecule, in linear, isosceles triangle and equilateral triangle geometries, were performed using the multi-reference configuration interaction method, taking into account single and double excitations (MR-CISD) and with explicit dynamic correlation of only the three valence electrons. The structure of each atom was approximated using a nine-electron effective core potential (ECP28MDF), and molecular orbitals (MOs) were optimized using the spin averaged (over doublet and quartet states) multi-configuration self-consistent field (SA-CASSCF) method. Core-valence correlations between twenty-four subvalence electrons located on doubly occupied MOs and three valence electrons were implicitly taken into account using a one-electron angular momentum-independent Muller-Mayer core polarization potential (CPP). As a result of topological investigations at over 35,000 points, two dimensional PES, SOC, and ETDM functions were obtained and the geometric parameters Rb3 were found at which the most intense vertical transitions and the maximum influence of the SOC are expected. Keywords: ultracold molecules, molecular electronic structure, excited states, spin-orbit coupling, transition probabilities, Rubidium.
  1. C. Giese, F. Stienkemeier, M. Mudrich, A.W. Hauser, W.E. Ernst. Phys. Chem. Chem. Phys., 13 (42), 18769-18780 (2011). DOI: 10.1039/c1cp21191a
  2. A.W. Hauser, W.E. Ernst. Phys. Chem. Chem. Phys., 13 (42), 18762-18768 (2011). DOI: 10.1039/c1cp21163c
  3. P. Soldan. J. Chem. Phys., 132 (23), 234-308 (2010). DOI: 10.1063/1.3455710
  4. A.W. Hauser, J.V. Pototschnig, W.E. Ernst. Chem. Phys., 460, 2-13 (2015). DOI: 10.1016/j.chemphys.2015.07.027
  5. E.A. Pazyuk, A.V. Zaitsevskii, A.V. Stolyarov, M. Tamanis, R. Ferber. Russian Chemical Reviews, 84 (10), 1001 (2015). DOI: 10.1070/RCR4534
  6. I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E.A. Pazyuk, A.V. Stolyarov. Phys. Rev. A, 85, 062520 (2012). DOI: 10.1103/PhysRevA.85.062520
  7. A.Stolyarov. Laser Synthesis of Ultra-Cold Molecules: From Design to Production (Springer International Publishing, 2017), pp. 169177. DOI: 10.1007/978-3-319-52431-3_16
  8. A.A. Buchachenko, A.V. Stolyarov, M.M. Szczesniak, G. Challasinski. J. Chem. Phys., 137 (11), 114305 (2012). DOI: 10.1063/1.4752740
  9. M. Tomza, K.W. Madison, R. Moszynski, R.V. Krems. Phys. Rev. A, 88, 050701(R) (2013). DOI: 10.1103/PhysRevA.88.050701
  10. P. Jasik, J. Kozicki, T. Kilich, J.E. Sienkiewicz, N.E. Henriksen. Phys. Chem. Chem. Phys., 20 (27), 18663-18670 (2018). DOI: 10.1039/c8cp02551g
  11. M.D. Frye, J.M. Hutson. New J. Phys., 23 (12), 125008 (2021). DOI: 10.1088/1367-2630/ac38
  12. P.D. Gregory, M.D. Frye, J.A. Blackmore, E.M. Bridge, R. Sawant, J.M. Hutson, S.L. Cornish. Nat. Commun., 10 (1), 3104 (2019). DOI: 10.1038/s41467-019-11033-y
  13. J. Schnabel, T. Kampschulte, S. Rupp, J.H. Denschlag, A. Kohn. Phys. Rev. A, 103 (2), 022820 (2021). DOI: 10.1103/PhysRevA.103.022820
  14. G. Aubock, J. Nagl, C. Callegari, W.E. Ernst. J. Chem. Phys., 129 (11), 1-10 (2008). DOI: 10.1063/1.2976765
  15. A.W. Hauser, G. Aubock, C. Callegari, W.E. Ernst. J. Chem. Phys., 132 (16), 164310 (2010). DOI: 10.1063/1.3394015
  16. J. Nagl, G. Aubock, A.W. Hauser, O. Allard, C. Callegari, W.E. Ernst. J. Chem. Phys., 128 (15), 1-9 (2008). DOI: 10.1063/1.2906120
  17. J. Nagl, G. Aubock, A.W. Hauser, O. Allard, C. Callegari, W.E. Ernst. Phys. Rev. Lett., 100 (6), 1-4 (2008). DOI: 10.1103/PhysRevLett.100.063001
  18. I.B. Bersuker. The Jahn-Teller Eect and Vibronic Interactions in Modern Chemistry. Modern Inorganic Chemistry (Plenum Press, New York, 1984), p. 371. DOI: 10.1007/978-1-4613-2653-3
  19. A.W. Hauser, C. Callegari, P. Soldan, W.E. Ernst. Chem. Phys., 375 (1), 73-84 (2010). DOI: 10.1016/j.chemphys.2010.07.025
  20. W. Muller, J. Flesch, W. Meyer. J. Chem. Phys., 80, 3297 (1984). DOI: 10.1063/1.447083
  21. E.A. Bormotova, S.V. Kozlov, E.A. Pazyuk, A.V. Stolyarov. Phys. Chem. Chem. Phys., 20 (3), 1889-1896 (2018). DOI: 10.1039/C7CP05548J
  22. S.V. Kozlov, E.A. Bormotova, A.A. Medvedev, E.A. Pazyuk, A.V. Stolyarov, A. Zaitsevskii. Phys. Chem. Chem. Phys., 22, 2295-2306 (2020). DOI: 10.1039/C9CP06421D
  23. E.A. Bormotova, S.V. Kozlov, E.A. Pazyuk, A.V. Stolyarov, I. Majewska, R. Moszynsky. Phys. Chem. Chem. Phys., 23 (9), 5187-5198 (2021). DOI: 10.1039/D0CP06487D
  24. E.A. Bormotova, S.V. Kozlov, E.A. Pazyuk, A.V. Stolyarov, W. Skomorowski, I. Majewska, R. Moszynski. Phys. Rev. A, 99 (1), 12507 (2019). DOI: 10.1103/PhysRevA.99.012507
  25. E.A. Pazyuk, E. Revina, A.V. Stolyarov. JQSRT, 177, 283-290 (2016). DOI: 10.1016/j.jqsrt.2016.01.004
  26. E.A. Pazyuk, E.I. Revina, A.V. Stolyarov. Chem. Phys., 462, 51-56 (2015). DOI: 10.1016/j.chemphys.2015.07.018
  27. V. Krumins, A. Kruzins, M. Tamanis, R. Ferber, V.V. Meshkov, E.A. Pazyuk, A.V. Stolyarov, A. Pashov. J. Chem. Phys., 156 (11), 114305 (2022). DOI: 10.1063/5.0082309
  28. V. Krumins, A. Kruzins, M. Tamanis, R. Ferber, A. Pashov, A.V. Oleynichenko, A. Zaitsevskii, E.A. Pazyuk, A.V. Stolyarov. JQSRT, 256, 107291 (2020). DOI: 10.1016/j.jqsrt.2020.107291
  29. I.S. Lim, P. Schwerdtfeger, B. Metz, H. Stoll. J. Chem. Phys., 122 (10), 104103 (2005). DOI: 10.1063/1.1856451
  30. H. Werner, P. Knowles, G. Knizia, F. Manby, M. Schutz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, et al. Molpro, version 2010.1, a package of ab initio programs (2010). ihttp://www.molpro.net
  31. J. Mitroy, M.S. Safronova, C.W. Clark. J. Phys. B, 43 (20), 202001 (2010). DOI: 10.1088/0953-4075/43/20/202001
  32. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database, [https://physics.nist.gov/asd]. NIST, Gaithersburg, MD. (2023)
  33. J.Y. Seto, R.J. Le Roy, J. Verges, C. Amiot. J. Chem. Phys., 113 (8), 3067-3076 (2000). DOI: 10.1063/1.1286979
  34. W. Jastrzebski, P. Kowalczyk, J. Szczepkowski, A.R. Allouche, P. Crozet, A.J. Ross. J. Chem. Phys., 143 (4), 044308 (2015). DOI: 10.1063/1.4927225
  35. H. Kato. B. Chem. Soc. Jpn., 66 (11), 3203-3234 (1993). DOI: 10.1246/bcsj.66.3203
  36. A. Zaitsevskii, E.A. Pazyuk, A.V. Stolyarov, O. Docenko, I. Klincare, O. Nikolayeva, M. Auzinsh, M. Tamanis, R. Ferber. Phys. Rev. A, 71 (1), 012510 (2005). DOI: 10.1103/PhysRevA.71.012510

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru