Rotation angle sensor based on a one-dimensional photonic crystal with a defect
Sidorov A. I.1,2, Efimov A. A. 2
1 ITMO University, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: sidorov@oi.ifmo.ru

PDF
The results of numerical simulation of the optical properties of a one-dimensional (1D) photonic crystal with a defect based on semiconductor-dielectric layers in the near-IR range are presented. The simulations used layers of silicon and silicon dioxide with optical thicknesses 3λ/4, λ/4 and 10λ/4. The influence of radiation incident angle on the spectral position of the defect's guidance band has been studied. It is shown that the sensitivity to the rotation angle lies within the limits of 6-20 nm/deg and 1.7-5.5 dB/deg, depending on the geometry of the sensor and the measurement method. This makes these photonic crystals promising for use in the rotation angle sensors as a sensitive element. Keywords: rotation angle sensor, incident angle, photonic crystal, photonic band gap, transfer matrix.
  1. A.S.A. Kumar, B. George, S.C. Mukhopadhyay. IEEE Sens. J. 21, 7195 (2021). DOI: 10.1109/JSEN.2020.3045461
  2. A.H. Falkne. IEEE Trans. Instrum. Meas. 43, 939 (1994)
  3. E.B. Mohammed, M. Rehman. IEE Proc.-Sci., Meas. Technol., 150, 15-18 (2003)
  4. B.P. Reddy, A. Murali, G. Shaga. in Proc. 2nd Int. Conf. Frontiers Sensors Technol. (ICFST), Shenzhen, China, 14 (2017)
  5. C. Schott, R. Racz, S. Huber. Sens. Actuators A, Phys. 132, 165 (2006)
  6. M. Shan, R. Min, Z. Zhong, Y. Wang, Y. Zhang. Opt. Laser Technol. 68, 124 (2015). DOI: 10.1007/s12647-020-00410-4
  7. D. Sagrario, P. Mead. Appl. Opt., 37, 6748 (1998). DOI: 10.1364/AO.37.006748
  8. J.B. Markowski. ES 530B: Res. Proj., Hindawi Publ. Corp. 17 (2008)
  9. A.M.R. Pinto, M. Lopez-Amo. J. Sens., 2012, 598178 (2012). DOI: 10.1155/2012/598178
  10. S. Upadhyay, V.L. Kalyan. Intern. J. Eng. Res. Techn., 4, 1006 (2015). DOI: 10.1007/s11468-019-00934-9
  11. Z. Baraket, J. Zaghdoudi, M. Kanzari. Opt. Mater. 64, 147 (2017). DOI: 10.1016/J.OPTMAT.2016.12.005
  12. A.I. Sidorov, L.A. Ignatieva. Optik 245, 167685 (2021). DOI: 10.1016/j.ijleo.2021
  13. E. Chow, A. Grot, L.W. Mirkarimi, M. Sigalas, G. Girolami. Opt. Lett., 29, 1093 (2004). DOI: 10.1364/OL.29.001093
  14. W.C.L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. de la Rue, A. Driessen, H.J.W.M. Hoekstra, R.M. de Ridder. IEEE J. Sel. Top. Quant. Electron., 11, 11 (2005). DOI: 10.1109/JSTQE.2004.841693
  15. B. Neil, X. Chen, J. McCann, C. Blair, J. Li, C. Zhao, D. Blair. Opt. Expr., 29, 15413 (2021). DOI: 10.1364/OE.425433
  16. M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University, 2000)
  17. E.D. Palik. Handbook of optical constants of solids. V. 3 (San Diego: Academic Press. 1998)
  18. Y. Chen, Y. Fan, Z. Zhang, Z. Zhu, K. Liu, J. Zhang, W. Xu, C. Guo. Opt. Expr. 29, 41206 (2021). DOI: 10.1364/OE.443842

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru