Optical anisotropy of polyvinyl alcohol films with metal nanorods under uniaxial tension
Kafeeva D. A.1, Gladskikh I.A.1, Dadadzhanov D.R. 1, Afanasjeva A.V.1, Sapunova A. A.1, Maslova N. A.2, Vartanyan T. A. 1
1 ITMO University, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: daler.dadadzhanov@gmail.com, Tigran.Vartanyan@mail.ru

PDF
The possibility of obtaining macroscale anisotropic thin films from polyvinyl alcohol with included metal nanorods under uniaxial tension conditions that do not lead to a change in the morphology of metal nanoparticles is shown. Silver and gold nanorods were obtained by directed growth from nuclei and then embedded in a polymer matrix based on polyvinyl alcohol. Initially isotropic films with absorption independent of the polarization of the probing light became anisotropic after stretching, which manifested itself in the dependence of the extinction spectra on the polarization of the probing radiation. The weakening of the longitudinal dipole plasmon resonance mode with the simultaneous enhancement of the transverse dipole plasmon resonance when the light polarization is rotated from 0o to 90o degree indicates the orientation of the nanorods in the film along the direction of its stretching. In addition to the change in absorption in the bands of dipole modes, a strong orientational dependence of absorption in the band of the quadrupole mode of the plasmon resonance of metal nanorods was found. Keywords: plasmon resonance, metal nanorods, anisotropy, polyvinyl alcohol.
  1. J. Cao, T. Sun, K.T. Grattan. Sensors and Actuators B: Chemical, 195, 332-351 (2014). DOI: 10.1016/j.snb.2014.01.056
  2. J. Wang, H.Z. Zhang, R.S. Li, C.Z. Huang. TrAC Trends in Analytical Chemistry, 80, 429-443 (2016). DOI: 10.1016/j.trac.2016.03.015
  3. I. Uechi, S. Yamada. Analyt. and Bioanalyt. Chem., 391, 2411-2421 (2008). DOI: 10.1007/s00216-008-2121-x
  4. H. Liao, C.L. Nehl, J.H. Hafner. Nanomedicine (London), 1 (2), 201-8 (2006). DOI: 10.2217/17435889.1.2.201
  5. I.A. Gladskikh, D.R. Dadadzhanov, R.A. Zakoldayev, T.A. Vartanyan. Opt. Spectrosc., 130 (9), 1153-1157 (2022). DOI: 10.21883/EOS.2022.09.54837.3649-22
  6. J. Zheng, X. Cheng, H. Zhang, X. Bai, R. Ai, L. Shao, J. Wang. Chem. Rev., 121 (21), 13342-13453 (2021). DOI: 10.1021/acs.chemrev.1c00422
  7. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, F. Vallee. Physical review letters, 107 (5), 057402 (2011). DOI: 10.1103/PhysRevLett.107.057402
  8. S. Biswas, D. Nepal, K. Park, R.A. Vaia. J. Phys. Chem. Lett., 3 (18), 2568-2574 (2012). DOI: 10.1021/jz3009908
  9. S.W. Prescott, P. Mulvaney. J. Appl. Phys., 99 (12), 123504 (2006). DOI: 10.1063/1.2203212
  10. J. Perez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney. Coordination Chemistry Reviews, 249 (17-18), 1870-1901 (2005). DOI: 10.1016/j.ccr.2005.01.030
  11. Z. Wu, Y. Liang, L. Cao, Q. Guo, S. Jiang, F. Mao, J. Sheng, Q. Xiao. Nanoscale, 11 (47), 22890-22898 (2019). DOI: 10.1039/C9NR07949A
  12. H.H. Chang, C.J. Murphy. Chemistry of Materials, 30 (4), 1427-1435 (2018). DOI: 10.1021/acs.chemmater.7b05310
  13. M.R. Shcherbakov, P.P. Vabishchevich, M.I. Dobynde, T.V. Dolgova, A.S. Sigov, C.M. Wang, A.A.E. Fedyanin. JETP Lett., 90 (6), 433 (2009). DOI: 10.1134/S0021364009180064
  14. M. Ren, E. Plum, J. Xu, N.I. Zheludev. Nature Commun., 3 (1), 1 (2012). DOI: 10.1038/ncomms1805
  15. O. Wilson, G.J. Wilson, P. Mulvaney. Advanced Materials, 14 (13-14), 1000-1004 (2002). DOI: 10.1002/1521-4095%2820020705%2914%3A13/14 <1000%3A%3AAID-ADMA1000>3.0.CO%3B2-E
  16. J. Perez-Juste, B. Rodri guez-Gonzalez, P. Mulvaney, L.M. Liz-Marzan. Advanced Functional Materials, 15 (7), 1065-1071 (2005). DOI: 10.1002/adfm.200400591
  17. H. Nur, S.M. Nasir. Malaysian Journal of Fundamental and Applied Sciences, 4 (1) (2008). DOI: 10.11113/mjfas.v4n1.33
  18. L. Dai, X. Lu, L. Song, Y. Huang, B. Liu, L. Zhang, J. Zhang, S. Wu, T. Chen. Advanced Materials Interfaces, 5 (11), 1800026 (2018). DOI: 10.1002/admi.201800026
  19. S. Stoenescu, M. Packirisamy, V.V. Truong. International J. Theoretical and Applied Nanotechnology, 1 (2), 26-29 (2013). DOI: 10.11159/ijtan.2013.003
  20. P.R. Yadav, M.H. Rizvi, B. Kuttich, S.R. Mishra, B.S. Chapman, B.B. Lynch, T. Kraus, A.L. Oldenburg, J.B. Tracy. ACS Applied Nano Materials, 4 (4), 3911-3921 (2021). DOI: 10.1021/acsanm.1c00309
  21. S. Stoenescu, V.V. Truong, M. Packirisamy. Plasmonics, 9, 299-307 (2014). DOI: 10.1007/s11468-013-9623-x
  22. N.B. Leonov, I.A. Gladskikh, V.A. Polishchuk, T.A. Vartanyan. Opt. Spectrosc., 119, 450-455 (2015). DOI: 10.1134/S0030400X15090179
  23. M.R. Hormozi-Nezhad, M. Jalali-Heravi, H. Robatjazi, H. Ebrahimi-Najafabadi. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 393, 46-52 (2012). DOI: 10.1016/j.colsurfa.2011.10.023
  24. B.M. van der Zande, L. Pages, R.A. Hikmet, A. van Blaaderen. J. Physical Chemistry B, 103 (28), 5761-5767 (1999). DOI: 10.1021/jp9847383
  25. A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats. Nature Materials, 8 (11), 867-871 (2009). DOI: 10.1038/NMAT2546
  26. I.O. Sosa, C. Noguez, R.G. Barrera. J. Phys. Chem. B, 107 (26), 6269-6275 (2003). DOI: 10.1021/jp0274076
  27. E.R. Encina, E.A. Coronado. J. Phys. Chem. C, 111 (45), 16796-16801 (2007). DOI: 10.1021/jp075880j
  28. D.L. Fedlheim, C.A. Foss. Metal Nanoparticles Synthesis, Characterization, and Applications, 1st Edition (CRC Press, Boca Raton, 2001). DOI: 10.1201/9780367800475
  29. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz. J. Phys. Chem. B, 107 (3), 668 (2003). DOI: 10.1021/jp026731y
  30. V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iati. J. Phys.: Cond. Mat., 29 (20), 203002 (2017). DOI: 10.1088/1361-648X/aa60f3
  31. B.N. Khlebtsov, N.G. Khlebtsov. J. Phys. Chem. C, 111 (31), 11516-11527 (2007). DOI: 10.1021/jp072707e

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru