Copper-doped carbon nanoparticles as a two-modal nanoprobe for luminescent and magnetic resonance imaging
Stepanidenko E. A.1, Vedernikova A. A.1, Ondar S. O.1,2, Badrieva Z. F.3, Brui E. A.3, Miruschenko M. D.1, Volina O. V.4, Koroleva A. V.4, Zhizhin E. V.4, Ushakova E. V.1
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
2Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
3Faculty of Physics, ITMO University, Saint Petersburg, Russia
4Research Park, Saint Petersburg State University, Saint Petersburg, Russia
Email: eastepanidenko@itmo.ru, aavedernikova@itmo.ru, badrievaz@gmail.com, ekaterina.brui@itmo.ru, ofussr@itmo.ru, o.volina@spbu.ru, st054051@spbu.ru, evgeniy.zhizhin@spbu.ru, elena.ushakova@itmo.ru

PDF
In this work, copper-doped carbon nanoparticles with emission in a wide spectral range and the ability to change the relaxation times of water protons during magnetic resonance imaging were fabricated. A high relaxivity value r1=0.92 mM-1·s-1 was achieved, which is the highest value of r1 for copper nanoparticles, to our knowledge. The suggested carbon nanoparticles are promising two-modal nanoprobes for bioimaging. Keywords: carbon nanoparticles, long-wavelength photoluminescence, magnetic resonance imaging, contrast agents.
  1. A.P. Litvin, X. Zhang, E.V. Ushakova, A.L. Rogach. Adv Funct Mater, 31 (18), 2010768 (2021). DOI: 10.1002/adfm.202010768
  2. E.A. Stepanidenko, E.V. Ushakova, A.V. Fedorov, A.L. Rogach. Nanomaterials, 11 (2), 364 (2021). DOI: 10.3390/nano11020364
  3. P.P. Falara, A. Zourou, K.V. Kordatos. Carbon NY, 195, 219 (2022). DOI: 10.1016/j.carbon.2022.04.029
  4. T. Rasheed. TrAC Trends in Analytical Chemistry, 158, 116841 (2023). DOI: 10.1016/j.trac.2022.116841
  5. Z. Wang, L. Zhang, K. Zhang, Y. Lu, J. Chen, S. Wang, B. Hu, X. Wang. Chemosphere, (2022). DOI: 10.1016/j.chemosphere.2021.132313
  6. X. Xu, Z. Chen, Q. Li, D. Meng, H. Jiang, Y. Zhou, S. Feng, Y. Yang. Microchemical J., 160 (2021). DOI: 10.1016/j.microc.2020.105708
  7. K. Jiang, Y. Wang, C. Cai, H. Lin. Advanced Materials, 30 (26), 1800783 (2018)
  8. Z. Tian, D. Li, E.V. Ushakova, V.G. Maslov, D. Zhou, P. Jing, D. Shen, S. Qu, A.L. Rogach. Advanced Science, 5 (9), 1800795 (2018). DOI: 10.1002/advs.201800795
  9. Y. Ding, X. Wang, M. Tang, H. Qiu. Advanced Science, 9 (3) (2022). DOI: 10.1002/advs.202103833
  10. W. Su, H. Wu, H. Xu, Y. Zhang, Y. Li, X. Li, L. Fan. Mater. Chem. Front., 4 (3), 821 (2020). DOI: 10.1039/c9qm00658c
  11. S. Khan, A. Dunphy, M.S. Anike, S. Belperain, K. Patel, N.H.L. Chiu, Z. Jia. International J. Molecular Sciences, 22 (13), 6786 (2021). DOI: 10.3390/IJMS22136786
  12. D. Li, E.V. Ushakova, A.L. Rogach, S. Qu. Small, 17 (43), 2102325 (2021). DOI: 10.1002/SMLL.202102325
  13. H. Ding, X.X. Zhou, J.S. Wei, X.B. Li, B.T. Qin, X.B. Chen, H.M. Xiong. Carbon NY, (2020). DOI: 10.1016/j.carbon.2020.06.024
  14. E.A. Stepanidenko, I.D. Skurlov, P.D. Khavlyuk, D.A. Onishchuk, A.V. Koroleva, E.V. Zhizhin, I.A. Arefina, D.A. Kurdyukov, D.A. Eurov, V.G. Golubev, A.V. Baranov, A.V. Fedorov, E.V. Ushakova, A.L. Rogach. Nanomaterials, 12(3) (2022). DOI: 10.3390/nano12030543
  15. H. Zhang, G. Wang, Z. Zhang, J.H. Lei, T.M. Liu, G. Xing, C.X. Deng, Z. Tang, S. Qu. Light: Science \& Applications, 11 (1), 1 (2022). DOI: 10.1038/s41377-022-00798-5
  16. M. Zheng, Y. Li, S. Liu, W. Wang, Z. Xie, X. Jing. ACS Appl Mater Interfaces, 8 (36), 23533 (2016). DOI: 10.1021/acsami.6b07453
  17. Y.D. Xiao, R. Paudel, J. Liu, C. Ma, Z.S. Zhang, S.K. Zhou. Int J. Mol. Med., 38 (5), 1319 (2016). DOI: 10.3892/IJMM.2016.2744/HTML
  18. Hazardous Substances Data Bank (HSDB: 7547 - PubChem. Available at: https://pubchem.ncbi.nlm.nih.gov/source/ hsdb/7547. Accessed April 6, 2023
  19. D. Zhuang, H. Zhang, G. Hu, B. Guo. J. Nanobiotechnology, 20 (1), 1 (2022). DOI: 10.1186/S12951-022-01479-6
  20. O. Perlman, I.S. Weitz, H. Azhari. Phys. Med. Biol., 60 (15), 5767 (2015). DOI: 10.1088/0031-9155/60/15/5767
  21. O. Perlman, A. Borodetsky, Y. Kauffmann, Y. Shamay, H. Azhari, I.S. Weitz. ACS Appl. Nano Mater., 2 (10) (2019). DOI: 10.1021/acsanm.9b00791
  22. Y. Chen, P. Liu, P. Sun, J. Jiang, Y. Zhu, T. Dong, Y. Cui, Y. Tian, T. An, J. Zhang, Z. Li, X. Yang. Theranostics, 9 (5), 1453 (2019). DOI: 10.7150/THNO.29987
  23. C. Song, Z. Ouyang, Y. Gao, H. Guo, S. Wang, D. Wang, J. Xia, M. Shen, X. Shi. Nano Today, 41 (2021). DOI: 10.1016/j.nantod.2021.101325
  24. H. Chen, Y. Qiu, D. Ding, H. Lin, W. Sun, G.D. Wang, W. Huang, W. Zhang, D. Lee, G. Liu, J. Xie, X. Chen. Advanced Materials, 30 (36) (2018). DOI: 10.1002/adma.201802748
  25. S. Zheng, N. Yu, C. Han, T. Xie, B. Dou, Y. Kong, F. Zuo, M. Shi, K. Xu. Biochem. Biophys. Res. Commun., 511 (2), 207 (2019). DOI: 10.1016/j.bbrc.2019.01.098
  26. Y. Huang, L. Li, D. Zhang, L. Gan, P. Zhao, Y. Zhang, Q. Zhang, M. Hua, C. Jia. Magn. Reson. Imaging, 68, 113 (2020). DOI: 10.1016/j.mri.2020.02.003
  27. L. Cardo, L. Marti nez-Parra, M. Cesco, B.M. Echeverri a-Beistegui, M. Marti nez-Moro, N. Herrero-Alvarez, M. Cabrerizo, S. Carregal-Romero, P. Ramos-Cabrer, J. Ruiz-Cabello, M. Prato. Small, 2206442 (2023). DOI: 10.1002/smll.202206442
  28. G.K. Das, N.J.J. Johnson, J. Cramen, B. Blasiak, P. Latta, B. Tomanek, F.C.J.M. van Veggel. J. Phys. Chem. Lett., 3 (4), 524 (2012). DOI: 10.1021/jz201664h
  29. T. Samanta, C. Hazra, V. Mahalingam. New J. Chemistry, 39 (1), 106 (2015). DOI: 10.1039/C4NJ01647E
  30. F. Wu, L. Yue, L. Yang, K. Wang, G. Liu, X. Luo, X. Zhu. Colloids Surf. B: Biointerfaces, 175 (2019). DOI: 10.1016/j.colsurfb.2018.11.054
  31. Z. Ji, P. Ai, C. Shao, T. Wang, C. Yan, L. Ye, W. Gu. ACS Biomater. Sci. Eng., 4 (6), 2089 (2018). DOI: 10.1021/acsbiomaterials.7b01008
  32. Q. Jia, J. Ge, W. Liu, X. Zheng, S. Chen, Y. Wen, H. Zhang, P. Wang. Advanced Materials, 30 (13) (2018). DOI: 10.1002/adma.201706090
  33. M. Zhang, T. Zheng, B. Sheng, F. Wu, Q. Zhang, W. Wang, J. Shen, N. Zhou, Y. Sun. Chemical Engineering J., 373 (2019). DOI: 10.1016/j.cej.2019.05.107
  34. S. Sun, L. Zhao, D. Wu, H. Zhang, H. Lian, X. Zhao, A. Wu, L. Zeng. ACS Appl. Bio. Mater., 4 (2), 1969 (2021). DOI: 10.1021/acsabm.0c01597
  35. P.P. Zhu, Z. Cheng, L.L. Du, Q. Chen, K.J. Tan. Langmuir, 34 (34), 9982 (2018). DOI: 10.1021/acs.langmuir.8b01230
  36. Y. Liu, P. Wu, X. Wu, C. Ma, S. Luo, M. Xu, W. Li, S. Liu. Talanta, 210 (2020). DOI: 10.1016/j.talanta.2019.120649
  37. M. Najaflu, M. Shahgolzari, F. Bani, A.Y. Khosroushahi. ACS Omega, 7 (38), (2022). DOI: 10.1021/acsomega.2c04484
  38. J. Du, Y. Zhao, J. Chen, P. Zhang, L. Gao, M. Wang, C. Cao, W. Wen, C. Zhu. RSC Adv, 7 (54) (2017). DOI: 10.1039/c7ra05383e
  39. B. Zhang, B. Wang, E.V. Ushakova, B. He, G. Xing, Z. Tang, A.L. Rogach, S. Qu. Small, 2204158 (2022). DOI: 10.1002/smll.202204158
  40. S. Caspani, R. Magalhaes, J.P. Araujo, C.T. Sousa. Materials, 13 (11), 2586 (2020). DOI: 10.3390/ma13112586

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru