New upconversion bulk and nanophosphors based on the Sr2Y8-x-yYbyTmxSi6O26
Zuev M. G. 1, Vasin A. A. 1, Ilves V. G. 2, Sokovnin S. Yu. 2,3
1Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
2Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
3Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: zuev@ihim.uran.ru, andrey-htt@yandex.ru, zefivg@mail.ru, sokovnin@iep.uran.ru

PDF
Polycrystalline phosphors with a Sr2Y8-x-yYbyTmxSi6O26 (x=0.005-0.5, y=0.2,0.3) total formula were synthesized. Nanoluminophor has been obtained from the Sr2Y7.695Yb0.3Tm0.005Si6O26 microcrystalline sample by the vacuum electron been evaporation, in the amorphous state, with the ~10.6 nm particle size. It is found, raman spectra undergoing modification by the transition from bulk- to nanosize state. Photoluminescene spectra micro- and nanophosphors are studied. Intensity of the blue emission, by the UV ligth excitation, grows in the x=0.005-0.02 region, with the x increasing. Upconversion photoluminescence (UPCL) spectra of the bulk phosphors and nanosample based on the Sr2Y7.695Yb0.3Tm0.005Si6O26 were measurd. At the pumping power around 70.8 mW, by the laser source with the λ=980 nm, thereshold population of the 3F3 level of Tm3+ ions exist. At a power higher 70.8 mW, a sharp increase of the luminescence intensityof the bulk- and nanophosphor occurs. For the 3H4->3H6 transition thereshold pumping power absent. This indicates that, pumping, during Yb->Tm energy transer, is a single photon process. Keywords: Photoluminescence, Tm3+, Yb3+ ions, raman spectra. DOI: 10.61011/EOS.2023.05.56517.55-22
  1. Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications (Springer-Verlag, Berlin-Heidelberg, 2017). V. 2
  2. B.J. Park, A-R. Hong, S. Park, K.-U. Kyung, K. Lee, H.S.Jang. Sci. Rep., 745659 (1917). DOI: 10.1038/srep45659
  3. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu. Nature Materials, 10, 968 (2011). DOI: 10.1038/nmat3149
  4. N.M. Khaidukov, M. Kirm, E. Feldbach, H. Magi, V. Nagirnyi, E. Toldsepp, S. Vielhauer, T. Justel, T. Jansen, V.N. Makhov. J. Lumin., 191, 51 (2017). DOI: 10.1016/j.jlumin.2017.01.033
  5. T. Jansen, T. Justel, M. Kirm, H. Magi, V. Nagirnyi, E. Toldsepp, S. Vielhauer, N.M. Khaidukov, V.N. Makhov. J. Lumin., 186, 205 (2017). DOI: 10.1016/j.jlumin.2017.02.004
  6. A.A. Vasin, M.G. Zuev, I.D. Popov, I.V. Baklanova, D.G. Kellerman, E.V. Zabolotskaya, Ju.G. Zajnulin, N.I. Kadyrova. Russ. J. Phys. Chem. A, 94, 2467 (2020). DOI: 10.1134/S0036024420120316
  7. A.A. Vasin, M.G. Zuev, E.V. Zabolotskaya, I.V. Baklanova, L.A. Akashev, R.F. Sammigulina. J. Lumin., 169, 26 (2015). DOI: 10.1016/j.jlumin.2015.07.019
  8. M.G. Zuev, S.Yu. Sokovnin, V.G. Il'ves, I.V. Baklanova, A.A. Vasin. J. Sol. State Chem., 218, 164 (2014). DOI: 10.1016/j.jssc.2014.06.034
  9. M.G. Zuev, V.G. Il'ves, S.Yu. Sokovnin, A.A. Vasin. Results in Optics, 5, 100189 (2021). DOI: 10.1016/j.rio.2021.100189
  10. C.C. Lin, R.-S. Liu. Introduction to the Basic Properties of Luminescent Materials ( in Phosphors, Up Conversion Nano Particles, QuantumDots and Their Applications) (Springer, Berlin-Heidelberg, 2017). V. 1. DOI: https://doi.org/10.1007/978-3-662-52771-9
  11. S.Yu. Sokovnin, V.G. Il'ves, M.G. Zuev. Engineering of Nanobiomaterials Applications of Nanobiomaterials (Elsevier, Amsterdam, 2016). V. 2. Ch. 2
  12. M.G. Zuev, V.G. Il'ves, S.Yu. Sokovnin, A.A. Vasin, I.V. Baklanova. Phys. Sol. St., 61 (5), 925 (2019). DOI: 10.1007/s11172-020-2854-z
  13. H. Gong, D.-Y. Tang, H. Huang, M.-D. Han, T. Sun, J. Zhang, X. Qin, J. Ma. J. Crystal Growth, 362 (1), 52 (2013). DOI: 10.1016/j.jcrysgro.2011.12.087
  14. D. Kioupis, G. Kakali. Ceram. Int., 42, 9640 (2016). DOI: 10.1016/j.ceramint.2016.03.050
  15. V.A. Pustovarov, A.A. Vasin, M.G. Zuev. Opt. Mat., 15, 100186 (2022). DOI: 10.1016/j.omx.2022.100186
  16. C. Alarcon-Fernandez, C. Zaldo, C. Cascales. J. All. Comp., 913, 165180 (2022). DOI: 10.1016/j.jallcom.2022.165180
  17. S. Brunauer. Adsorbtsiya gazov i parov. Fizicheskaya adsorbtsiya. (GIIL, M., 1948) (in Russian). T. 1
  18. M.G. Zuev, A.M. Karpov, A.S. Shkvarin. J. Sol. St. Chem., 184, 52 (2011). DOI: 10.1016/j.jssc.2010.10.014
  19. R.D. Shannon. Acta Cryst., A32, 751 (1976). DOI: 10.1107/S0567739476001551
  20. A. Jusza, L. Lipinska, M. Baran, P. Polis, A. Olszyna, R. Piramidowicz. Opt. Mat., 971, 09365 (2019). DOI: 10.1016/j.optmat.2019.109365
  21. K. Janani, S. Ramasubramanian, P. Thiyagarajan. Materials Today: Proceedings, 33 (5), 2082 (2020). DOI: 10.1016/j.matpr.2020.02.091
  22. L. Xu, C. Xu. Ceram. Int., 46, 19425 (2020). DOI: 10.1016/j.ceramint.2020.04.287
  23. J. Zhang, J. Chen, Y. Zhang, S. An. J. All. Comp., 860, 158473 (2021). DOI: 10.1016/j.jallcom.2020.158473
  24. M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, M.P. Hehlen. Phys. Rev. B, 61, 3337 (2000). DOI: 10.1103/PhysRevB.61.3337
  25. W. Feng, X. Zhu, F. Li. NPG Asia Materials, 5 (e75), 63 (2013). DOI: 10.1038/am.2013.63

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru