Optical properties of the langasite family crystals: La3Ga5SiO14, La3Ga5.5Ta0.5O14, Ca3TaGa3Si2O14
Zabelina E.V. 1, Kozlova N.S. 1, Buzanov O.A. 2
1National University of Science and Technology MISiS, Moscow, Russia
2FOMOS-Materials, Moscow, Russia
Email: zabelina.ev@misis.ru, kozlova_nina@mail.ru, buzanov@newpiezo.com

PDF
Optical properties of lanthanum-gallium silicate (La3Ga5SiO14), lanthanum-gallium tantalate (La3Ga5.5Ta0.5O14), calcium-tantalum-gallium silicate (Ca3TaGa3Si2O14) crystals in the near ultraviolet (UV) and visible wavelength ranges (200-800 nm) have been studied. For the first time the angles of deviation of the moments of the dipole transition spectral dependences theta(λ) were used to characterize the absorption processes in these crystals. These dependences make it possible to reveal absorption bands that are weakly noticeable on the transmission coefficients spectral dependences, and to estimate the degree of deviation of the dispersion dependence theta(λ) from the value theta=45o corresponding to an ideal ordered crystal. Analysis of theta(λ) dependencies showed that in the studied wavelength range, the lowest deviation from theta=45o is observed in Ca3TaGa3Si2O14, and the highest in La3Ga5SiO14. The coefficients of the specific rotation angle of the polarization plane rho were obtained by the spectrophotometric interference method in polarized light. The measured values are best approximated by the Vyshin equation. For the first time, dependences of the modified Drude formula 1/rho=f(λ2 were calculated for these crystals. These dependences should be linear in case of an ideal crystal. The largest deviation from the linear dependence is observed for La3Ga5SiO14 crystals, and the lowest for Ca3TaGa3Si2O14. The discrete values of the refractive coefficients No and Ne were measured by the prism method. La3Ga5.5Ta0.5O14 crystals have the highest refractive coefficients, Ca3TaGa3Si2O14 crystals have the lowest. The obtained values are approximated by the Sellmeier equation. Keywords: lanthanum-gallium silicate, lanthanum-gallium tantalate, calcium-tantalum-gallium silicate, refractive index, transmission coefficients spectral dependences, polarization plane specific rotation, dipole moment of transition. DOI: 10.61011/EOS.2023.05.56511.67-22
  1. B.V. Mill, A.V. Butashin, G.G. Khodzhabagyan, E.A. Belokoneva, N.V. Belov. DAN SSSR, 264 (6), 1385 (1982) (in Russian)
  2. A.A. Kaminskii, B.V. Mill, G.G. Khodzhabagyan, A.F. Konstantinova, A.I. Okorochkov, I.M. Silvestrova. Phys. Stat. Sol. (a), 80, 387 (1983). DOI: 10.1002/pssa.2210800142
  3. Fizika i spektroskopiya lazernykh kristallov (Nauka, Moskva, 1986). (in Russian)
  4. S.A. Pikin, I.S. Lyubutin, A.P. Dudka. Crystallography Reports, 60 (5), 729 (2015). DOI: 10.1134/S1063774515050077
  5. A.P. Dudka. Crystallography Reports, 61 (2), 187 (2016), DOI: 10.1134/S1063774516020073
  6. J. Schreuer, C. Thybaut, M. Prestat, J. Stade, E. Haussuhl. IEEE Symposium on Ultrasonics, (1), 196 (2003). DOI: 10.1109/ULTSYM.2003.1293387
  7. B.V. Mill', Z.A. Kazei, D.M. Tsymbarenko. Russ. J. Inorg. Chem., 63 (10), 1283 (2018). DOI: 10.1134/S0036023618100133
  8. B.A. Dorogovin, S.Yu. Stepanov, G.V. Semenkovich, A.B. Doubovski, I.M. Philippov, Yu.P. Buglov, G.K. Danilova. 2000 IEEE/EIA Int. Freq. Cont. Symp. Exhib., 195 (2000). DOI: 10.1109/FREQ.2000.887353
  9. B.V. Mill', Yu.V. Pisarevsky, E.L. Belokoneva. 1999 Joint meeting EFTF-IEEE IFCS, 829 (1999). DOI: 10.1109/FREQ.1999.841433
  10. A.P. Dudka. Crystallography Reports, 62 (2), 195 (2017). DOI: 10.1134/S1063774517020109
  11. A.P. Dudka, B.V. Mill, Y.V. Pisarevsky. Crystallography Reports, 54 (4), 558 (2009). DOI: 10.1134/S106377450904004X
  12. H. Takeda, K. Sugiyama, K. Inaba, K. Shimamura, T. Fukuda. Jpn. J. Appl. Phys., 36 (7B), 919 (1997). DOI: 10.1143/jjap.36.L919
  13. M. Alani, N. Batis, T. Laroche, A. Nehari, H. Cabane, K. Lebbou, J.J. Boy. Opt. Mater., 65, 99 (2017). DOI: 10.1016/j.optmat.2016.09.072
  14. Z.-M. Wang, W.-T. Yu, D.-R. Yuan, X.-Q. Wang, G. Xue, X.-Z. Shi, D. Xu, M.-K. Lu. Oldenbourg Wissenschaftsverlag, 389 (2003). DOI: 10.1524/ncrs.2003.218.jg.421
  15. O.A. Buzanov, E.V. Zabelina, N.S. Kozlova. Crystallography Reports, 52 (4), 691 (2007). DOI: 10.1134/S1063774507040177
  16. O.A. Buzanov, N.S. Kozlova, E.V. Zabelina, A.P. Kozlova, N.A. Siminel. Izv. VUZov. Materialy elektronnoy tekhniki, (1), 14 (2010). (in Russian)
  17. H. Kawanaka, H. Takeda, K. Shimamura, T. Fukuda. J. Crytal Growth., 183, 274 (1998). DOI: 10.1016/S0022-0248(97)00481-8
  18. E.V. Zabelina. Neodnorodnosti v kristallakh lantan-galliyevogo tantalata i ikh vliyaniye na opticheskiye svoystva. Synopsis of PhD thesis. (NRTU "MISiS", M., 2018). (in Russian). URL: https://misis.ru/science/dissertations/2018/3392/
  19. A.V. Shubnikov. Osnovy opticheskoy kristallografii (Izd-vo AN SSSR, M., 1959). (in Russian)
  20. A.A. Kaminsky. Fizika i spektroskopiya lazernykh kristallov (Nauka, M., 1986). (in Russian)
  21. B.V. Grinev, M.F. Dubovik, A.V. Tolmachev. Opticheskiye monokristally slozhnykh oksidnykh soyedineniy. (Institute of Single Crystals, Kharkov, 2002). (in Russian)
  22. E. Boursier, P. Segonds, B. Boulanger, C. Felix, J. Debray, D. Jegouso, B. Menaert, D. Roshchupkin, I. Shoji. Opt. Lett., 39 (13), 4033 (2014). DOI: 10.1364/OL.39.004033
  23. Y. Futami, T. Yanagida, Y. Fujimoto, V. Jary, J. Pejchal, Y. Yokota, M. Kikuchi, M. Nikl, A. Yoshikawa. Opt. Mater., 34, 1513 (2012). DOI: 10.1016/j.optmat.2012.02.046
  24. E.N. Domoroshchina, G.M. Kuzmicheva, V.B. Rybakov, A.B. Dubovsky, E.V. Tyunina, S.Yu. Stepanov. Perspektivnyye materialy. Materialy kvantovoy elektroniki i photoniki, 4, 17 (2004). (in Russian)
  25. B. Boutahraoui, A. Nehari, J. Boy, X. Vacheret, M. Allani, H. Cabane, M. Dumortier, M. Derbal, K. Lebbou. Opt. Mater., 65, 103 (2017). DOI: 10.1016/j.optmat.2016.09.018
  26. T. Taishi, T. Hayashi, N. Bamba, Y. Ohno, I. Yonenaga, W. Hoshikawa. Physica B: Cond. Matt., 401-402, 437 (2007). DOI: 10.1016/j.physb.2007.08.206
  27. Y. Yokota, M. Sato, Y. Futami, K. Tota, T. Yanagida, K. Onodera, A. Yoshikawa. J. Crystal Growth., 352, 147 (2012). DOI: 10.1016/j.jcrysgro.2012.01.012
  28. M.F. Dubovik, R.A. Katrunov, T.I. Korshikova. IEEE Int. Frequency Control Symposium, 95, 638 (1995). DOI: 10.1109/FREQ.1995.484065
  29. A.V. Butashin, V.A. Fedorov, V.F. Meshcheryakov, V.S. Mironov, L.G. Shilin, O.A. Buzanov, A.N. Zabelin, S. A. Sakharov. Tez. dokl. XIII NKRK (M., 2008), 532 p. (in Russian)
  30. L. Gheorghe, S. Georgescu. 2002 IEEE Ultrasonics symposium, 1, 965 (2002). DOI: 10.1109/ULTSYM.2002.1193556
  31. H. Kong, J. Wang, H. Zhang, X. Yin, S. Zhang, Y. Liu, X. Cheng, L. Gao, X. Hu, M. Jiang. J. Crystal Growth, 254, 360 (2003). DOI: 10.1016/S0022-0248(03)01106-0
  32. J. Wang, X. Yin, S. Zhang, Y. Kong, Y. Zhang, X. Hu, M. Jiang. Opt. Mater., 23, 393 (2003). DOI: 10.1016/S0925-3467(02)00325-7
  33. Z. Wang, D. Yuan, L. Pan, P. Zhang, X. Cheng, M. Zhao, Z. Li, X. Duan, Z. Chen, S. Guo, D. Xu, M. Lu. Opt.Mater., 23, 471 (2003). DOI: 10.1016/S0925-3467(02)00341-5
  34. B. Law, J.R.G. Appleby, K. Shimamura, H. Takeda, T. Kohno, T. Fukuda. J. Crystal Growth, 163, 388 (1996). DOI: 10.1016/0022-0248(95)01002-5
  35. X. Fu, E.G. Villora, Y. Matsushita, Y. Kitanaka, Y. Noguchi, M. Miyayama, K. Shimamura, N. Ohashi. J. Ceramic Society Japan, 124 (5), 523 (2016). DOI: 10.2109/jcersj2.15293
  36. F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, X. Zhao. Cryst. Eng. Comm., 16, 10286 (2014). DOI: 10.1039/C4CE01740D
  37. X. Shi, D. Yuan, A. Wei, Z. Wang, B. Wang. Mater. Res. Bull., 41 (6), 1052 (2006). DOI: 10.1016/j.materresbull.2005.11.019
  38. A. Wei, B. Wang, H. Qi, D. Yuan. Cryst. Res. Technol., 41 (4), 371 (2006). DOI: 10.1002/crat.200510589
  39. O.A. Buzanov, N.S. Kozlova, D.A. Spassky, E.V. Zabelina, A.P. Kozlova, N.A. Siminel. In the collection. Collection of scientific articles of the II International Scientific and Practical Conference "Physics and Technology of Nanomaterials and Structures" (Kursk, 2015), p. 82 -87 and are under study
  40. N.S. Kozlova, O.A. Buzanov, E.V. Zabelina, A.P. Kozlova, M.B. Bykova. Crystallography Reports, 61 (2), 275 (2016). DOI: 10.1134/S1063774516020103
  41. N.S. Kozlova, Zh.A. Goreeva, E.V. Zabelina. 2nd Int. Ural Conf. on Measurements, UralCon, (15) 2017. DOI: 10.1109/URALCON.2017.8120681
  42. K.A. Kaldybaev, A.F. Konstantinova, Z.B. Perekalina. Girotropiya odnoosnykh pogloshchayushchikh kristallov (Institut cotsial'no-ekonomicheskikh i proizvodstvenno-ekologicheskikh problem investirovaniya, M., 2000)
  43. R.B. Heimann, M. Hengst, M. Rossberg, J. Bohm. Phys. St. Sol. (a), Appl. Res., 195 (2), 468 (2003). DOI: 10.1002/pssa.200305950
  44. Z. Wang, D. Yuan, A. Wei, H. Qi, X. Shi, D. Xu, M. Lu. J. Crystal Growth, 263 (1-4), 389 (2004). DOI 10.1016/j.jcrysgro.2003.11.098
  45. Molecular Spectroscopy: Fundamentals of Theory and Practice (Infra-M, M., 2018). (in Russia)
  46. D. Metzler. Biochimiya. Khimicheskiye reaktsii v zhivoy kletke (Mir, M., 1980) (in Russian)
  47. J. Bohm, R.B. Heimann, M. Hengst, R. Roewer, J. Schindler. J. Crystal Growth, 204 (1-2), 128 (1999). DOI: 10.1016/S0022-0248(99)00186-4
  48. A.F. Konstantinova, K.A. Kaldybaev, Z.B. Perekalina, V.P. Orekhova. Crystallogr. Rep., 47 (3), 527 (2002). (in Russian)
  49. A.F. Konstantinova, B.N. Grechushnikov, B.V. Bokut, E.G. Valyashko. Opticheskiye svoystva kristallov (Navuka i Tekhnika, Minsk, 1995). (in Russian)
  50. V.A. Kizel, V.I. Burkov. Girotropiya kristallov (Nauka, M., 1980). (in Russian)
  51. V. Vyv si n, V. Janku. Opt. Commun., 3 (5), 305 (1971)
  52. T. Dimov, Zh. Bunzarov, I. Iliev, P. Petkova, Y. Tzoukrovski. J. Physics: Conf. Ser., 253, 012080 (2010). DOI: 10.1088/1742-6596/253/1/012080
  53. E.V. Zabelina, N.S. Kozlova, Zh.A. Goreeva, V.M. Kasimova. Izv. VUZov. Materialy elektronnoy tekhniki , 22 (3), 168 (2019). (in Russian). DOI: 10.17073/1609-3577-2019-3-168-178 [E.V. Zabelina, N.S. Kozlova, Zh.A. Goreeva, V.M. Kasimova. Russian Microelectronics, 48 (8), 617 (2020). DOI: 10.1134/S1063739720080120]
  54. R. Komatsu, T. Sugawara, S. Uda. Jpn. J. Appl. Phys., 36 (9S), 6159 (1997). DOI 10.1143/JJAP.36.6159
  55. J. Stade, L. Bohaty, M. Hengst, R.B. Heimann. Cryst. Res. Technol., 10 (37), 1113 (2002). DOI: 10.1002/1521-4079(200210)37:10<1113::AID- CRAT1113>3.0.CO;2-E
  56. F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Zh. Wanga, X. Zhao. Cryst. Eng. Comm., 16, 10286 (2014). DOI: 10.1039/c4ce01740d
  57. D. Stephenson. Modeling variation in the refractive index of optical glasses. Thesis (Rochester Institute of Technology, Rochester, 1990). URL: https://scholarworks.rit.edu/cgi/viewcontent.cgi? article=3805\& context=theses

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru