Photocatalytic Reaction NO+COhν(CO2)ads + 1/2N2, activated on ZnO/ZnO1-x/O- under exciton resonance excitation
Blashkov I. V 1, Titov V. V. 1
1Fock Institute of Physics, St.Petersburg State University, Petergof, Russia

The exciton channel of ZnO photoactivation was used for the first time to carry out the environmentally important photocatalytic reaction NO+COhν(CO2)ads+1/2N2 on ZnO. When the excitation energy is delivered to the surface by an electrically neutral exciton, there are no losses in recombination and in overcoming the potential surface barrier, which are the main losses in the transfer of photo-generated e-/h+ pairs. To suppress the undesirable radiative decay of an exciton, the ZnO/ZnO1-x/O- 2D structure was created on the ZnO surface, in which the exciton decays nonradiatively into a pair of long-lived local states of an electron and a hole, on which the reactionary acts occur. For the redox reaction (1), the obtained values of the quantum yield Y (the number of reaction acts per one absorbed quantum) and the efficiency E (the number of acts per one incident quantum) upon exciton excitation at λ=382 nm are 5-7 times greater than when excited in the interband absorption region at λ=365 nm. The methods of mass-spectrometry (MS) and thermodesorption spectroscopy (TDS) were used to study the initial, intermediate and final products of reaction (1) in the gas and adsorbed phases, and the features of the influence of the initial products NO and CO on each other during the interaction of their mixture with ZnO in the dark and under irradiation at λ=382 nm. Keywords: photocatalysis, exciton, 2D structure ZnO/ZnO1-x/O-, long-lived active centers, redox reaction, air purification.
  1. Chong-Chen Wang, Jian-Rong Li, Xiu-Liang Lu, Yan-Qiu Zhang, Guangsheng Guo. Energy Environ. Sci., 7, 2831 (2014). DOI: 10.1039/c4ee01299b
  2. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. A. Morko c. J. Appl. Phys., 98, 041301 (2005). DOI:?10.1063/1.1992666
  3. M. Law, L.E. Greene, J.C. Johnson. Nature Materials, 4 (6), 455-459 (2005). DOI:10.1038/nmat1387
  4. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar. J. Hazardous. Materials, 170, 560-569 (2009). DOI:?10.1016/j.jhazmat.2009.05.064
  5. A. Ko odziejczak-Radzimska, T. Jesionowski. Materials, 7, 2833-2881 (2014). DOI:10.3390/ma7042833
  6. Yajun Wang, Qisheng Wang, Xueying Zhan. Nanoscale, 5, 8326 (2013). DOI: 10.1039/c3nr01577g
  7. V.E. Drozd, V.V. Titov, I.A. Kasatkin, L.L. Basov, A.A. Lisachenko, O.L. Stroyuk, S.Y. Kuchmiy. Thin Solid Films, 573, 128-133 (2014). DOI: 10.1016/j.tsf.2014.11.023
  8. I.V. Blashkov, L.L. Basov, A.A. Lisachenko. J. Phys. Chem. C, 121, 28364-28372 (2017). DOI:?10.1021/acs.jpcc.7b10143
  9. A. A. Lisachenko, L.L. Basov. In: Book of Abstracts, 25th International Conference on Defects in Semiconductors (ICDS-25) (Saint-Petersburg, 2009), p. 363
  10. V.V. Titov, A.A. Lisachenko, M.E. Labzovskaya, I.Kh. Akopyan, B.V. Novikov. J. Phys. Chem. C, 123, 27399-27405 (2019). DOI:?10.1021/acs.jpcc.9b08507
  11. E.F. Gross, N.A. Karryev. DAN SSSR, 84 (3), 471-474 (1952). (in Russian)
  12. A.N. Terenin. Fotonika molekul krasiteley i rodstvennykh organicheskikh soedineniy. (Nauka, Leningrad, 1967), p.498. (in Russian)
  13. V.V. Titov, A.A. Lisachenko, M.E. Labzovskaya, I.Kh. Akopyan, B.V. Novikov. Phys. Sol. State, 61 (11), 2134-2138 (2019). DOI:?10.1134/S1063783419110398
  14. R.V. Mikhaylov, A.A. Lisachenko, V.V. Titov. J. Phys. Chem. C, 116, 23332-23341 (2012). DOI:?10.1021/jp305652p
  15. V.V. Titov, A.A. Lisachenko, I.K. Akopyan, M.E. Labzowskaya, B.V. Novikov. J. Lumin., 195, 153-158 (2018). DOI: 10.1016/j.jlumin.2017.11.022
  16. A.A. Lisachenko, A.O. Klimovskii, R.V. Mikhailov, B.N. Shelimov, M. Che. Appl. Catalysis B: Environmental, 67, 127-135 (2006). DOI: 10.1016/j.apcatb.2006.04.018
  17. R.V. Mikhaylov, A.A. Lisachenko, B.N. Shelimov, V.B. Kazansky, Gianmario Martra, Salvatore Coluccia. Phys. Chem. C, 20 (117), 10345-10352 (2012). DOI:?10.1021/jp311593s
  18. R.V. Mikhaylov, A.A. Lisachenko, B.N. Shelimov, V.B. Kazansky. J. Phys. Chem. C, 113, 20381-20387 (2009), DOI: 10.1021/jp906176c
  19. D. Scarano, G. Spoto, S. Bordiga, A. Zecchina. Surface Science, 276, 281-298 (1992). DOI:?10.1016/0039-6028(92)90716-J
  20. J. Rasko, F. Solymosi. J. Phys. Chem., 98, 7147-7152 (1994). DOI:?10.1021/j100080a009

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245