Localized excitons in ZnMnO
Sokolov V. I. 1, Gruzdev N. B. 1, Men`shenin V. V. 1, Vokhmintsev A. S. 2, Savchenko S. S. 2, Weinstein I.A. 2, Emelchenko G. A. 3
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
3Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Email: visokolov@imp.uran.ru, nbgruzdev@mail.ru, menshenin@imp.uran.ru, a.s.vokhmintsev@urfu.ru, s.s.savchenko@urfu.ru, i.a.weinstein@urfu.ru, emelch@issp.ac.ru

Lines a, b, c, d and impurity absorption edge of ZnMnO for sigma- and π-polarizations of light in temperature interval of 7-300 K were registered in this paper. Intensive lines aπ and asigma are clearly observed in interval of 7-100 K, while other lines are observed only at low temperatures. For determination of type of optical transitions, to which excitonic lines a, b, c, d are corresponding the calculation of oscillator strength of most intensive lines was made. Lines aπ and asigma have Lorentz form, parameters of this form were calculated with OriginPro 9.1 program. The energy of impurity absorption edge was determined. Lines a, b, c and d were analyzed in model of Mn2+-4O2- cluster. Optical transitions take place from antibonding (p+d5)*-states in forbidden gap to state, which is splitted from the bottom of conduction band of ZnMnO. Electron-hole pairs which are localized inside the cluster are called as local excitons. Keywords: zinc oxide, localized excitons, antibonding states.
  1. F.W. Kleinlein, R. Helbig. Z. Physik, 266, 201 (1974)
  2. V.I. Sokolov, N.B. Gruzdev, V.A. Vazhenin, A.V. Fokin, A.V. Druzhinin. Phys. Sol. St., 61 (5), 702 (2019). DOI: 10.1134/S1063783419050354
  3. V.I. Sokolov, N.B. Gruzdev, V.A. Vazhenin, A.V. Fokin, A.V. Korolev, V.V. Menshenin. J. Exp. Theor. Phys., 130 (5), 681 (2020). DOI: 10.1134/S1063776120040123]
  4. I.B. Bersucker. Elektronnoe stroenie i svoistva koordinatsionnykh soedinenii (Electronic structure and properties of coordination compounds) (Khimiya, Leningrad, 1976)
  5. G.F. Koster, J.C. Slater. Phys. Rev., 95, 1167 (1954)
  6. D.L. Dexter.Phys. Rev., 101 (1), 48 (1956)
  7. G. Lucovsky. Solid State Comm., 3, 299 (1965)
  8. H. Morkoc, A. Ozgur. Zinc Oxide (WILEY-VCN Verlag, Weinheim, 2009)
  9. K.A. Kikoin,V.N. Fleurov. Transition Meta lImpurities in Semiconductors (World Sci., Singapore,1994)
  10. V.I. Sokolov, K.A. Kikoin. Soviet Scientific Rev. A, 12, 147 (1989)
  11. V.I. Sokolov, N.B. Gruzdev, V.N. Churmanov, V.V. Menshenin, G.A. Emelchenko. Low Temperature Physics, 47 (1), 38 (2021)
  12. R.J. Robbins, P.J. Dean. Adv. Phys., 27, 499 (1978)
  13. S.G. Bishop, R.J. Robbins, P.J. Dean. Solid State Comm., 33, 119 (1980)
  14. G.G. Zegrya, V.F. Masterov. Phys. Techn. Semicond., 29, 1893 (1995)
  15. T. Mizokawa, T. Nambu, A. Fujimori, T. Fukumura, M. Kawasaki. Phys. Rev. B, 65, 085209 (2002). DOI:10.1103/PhysRevB.65.085209

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru