Optical properties and photo-heating of aqueous suspensions of silicon-based nanocomposite particles with deposited gold
Kornilova A.V. 1,2, Ikramova S.B. 3, Musayeva D.U.4, Syuy A. V. 5, Timoshenko V. Yu. 1,2
1Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
3Al Farabi Kazakh National University, Almaty, Kazakhstan
4National Research Nuclear University “MEPhI”, Moscow, Russia
5Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
Email: shargenga@mail.ru, Ykramova.Saltanat@kaznu.kz, alsyuy271@gmail.com

The optical properties of nanocomposite particles consisting of silicon cores about 100 nm in size with smaller gold nanoparticles deposited on their surface have been studied. An increase in the absorption of light in the near-infrared region of the spectrum for the obtained nanoparticles is observed in comparison with that for nanoparticles of pure silicon or gold. Experiments on measuring the temperature of aqueous suspensions showed significantly higher rates of photoheating of nanocomposite particles upon irradiation with laser radiation at a wavelength of 810 nm compared to the case of pure silicon nanoparticles. Calculations of the distribution of the electric field showed multiple increases in its strength near nanocomposite particles upon irradiation with light in the visible and near-infrared ranges and also made it possible to find the scattering and absorption contributions to the extinction spectra of nanoparticle suspensions. The observed enhanced photoheating of nanocomposite particles can be used for application in antibacterial treatment and cancer hyperthermia. Keywords: nanophotonics, plasmonics, nanoparticles, photohyperthermia, silicon, gold.
  1. A.V. Fedorov, I.D. Rukhlenko, A.F. Baranov, S.Yu. Kruchinin. Opticheskiye svoystva poluprovodnikovykh kvantovykh tochek (Nauka, St. Petersburg, 2011) (in Russian)
  2. A. Trugler. Optical Properties of Metallic Nanoparticles: Basic Principles and Simulation (Springer Ser. Mat. Sci., 2016)
  3. N. Sardana, V. Talalaev, F. Heyroth, G. Schmidt, Ch. Bohley, A. Sprafke, J. Schilling. Opt. Express, 24, 254-261 (2016)
  4. M. Mallory, E. Gogineni, G. Jones, L. Greerd, C. Simone. Crit. Rev. Oncol./Hematol., 97, 56-64 (2016)
  5. A.V. Kornilova, G.A. Kuralbayeva, A.V. Stavitskaya, M.V. Gorbachevskii, O.V. Karpukhina, I.V. Lysenko, V.V. Pryadun, A.A. Novikov, A.N. Vasiliev, V.Yu. Timoshenko. Appl. Surf. Sci., 566, 150671 (2021)
  6. S. Amdouni et al. Mat. Sci. Semicond. Proc., 75, 206-213 (2018)
  7. A.V. Kabashin, M. Meunier. J. Appl. Phys., 94, 7941-7943 (2003)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru