Application of uncooled microbolometers for detecting pulsed terahertz and infrared radiation
Dem'yanenko M. A. 1, Startsev V. V.2
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2ASTRON, Lytkarino optoelectronic systems, Lytkarino, Russia
Email: demyanenko@isp.nsc.ru, v@astrohn.ru

PDF
Analytical relations for temperature response of the bolometer to periodic radiation pulses are obtained. It is theoretically shown and experimentally confirmed by the example of infrared bolometers that when detecting short radiation pulses, in contrast to the case of constant radiation, increasing the thermal conductivity of the bolometer and, accordingly, decreasing its thermal relaxation time, it is possible to significantly increase the response rate of the receiver, practically without reducing its sensitivity. The possibility of effective registration of pulsed terahertz radiation by microbolometers with a resistively coupled, thermally non-isolated antenna is considered. It is shown that such bolometers, which have increased thermal conductivity and, accordingly, reduced sensitivity to continuous-wave radiation, can be highly effective when detecting pulsed radiation with a duration shorter than the thermal relaxation time of the bolometer. On their basis, uncooled matrix detectors of pulsed terahertz radiation, characterized by a minimum detectable energy of less than 1·10-12 J and a frame rate of up to 1000 Hz, can be developed. Keywords: microbolometer, pulsed terahertz radiation, antenna.
  1. A. Rogalski. Progress in Quantum Electronics, 36 (2--3), 342 (2012). DOI: 10.1016/j.pquantelec.2012.07.001
  2. F. Niklaus, C. Vieider, H. Jakobsen. Proc. SPIE, 6836, 68360D (2007). DOI: 10.1117/12.755128
  3. A. Rogalski. Opto-Electron. Rev., 21 (4), 406 (2013). DOI: 10.2478/s11772-013-0110-x
  4. A.W.M. Lee, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno. IEEE Photonics Technol. Lett., 18 (13), 1415 (2006). DOI: 10.1109/LPT.2006.877220
  5. N. Oda. C.R. Physique, 11 (7--8), 496 (2010). DOI: 10.1016/j.crhy.2010.05.001
  6. M.A. Dem'yanenko, D.G. Esaev, B.A. Knyazev, G.N. Kulipanov, N.A. Vinokurov. Appl. Phys. Lett., 92 (13), 131116 (2008). DOI: 10.1063/1.2898138
  7. N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, M. Kuwata-Gonokami. IEEE Trans. on Terahertz Sci. Technol., 6 (2), 175 (2016). DOI: 10.1109/TTHZ.2015.2508010
  8. F. Simoens, J. Meilhan. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2012), 20130111 (2014). DOI: 10.1098/rsta.2013.0111
  9. F. Simoens, J. Meilhan, J.-A. Nicolas. J. Infrared Milli Terahz Waves, 36, 961 (2015). DOI: 10.1007/s10762-015-0197-x
  10. G.S. Kent, B.R. Clemesha, R.W. Wright. J. Atmospheric Terrestrial Phys., 29 (2), 169 (1967). DOI: 10.1016/0021-9169(67)90131-6
  11. G.S. Kent, R.W. Wright. J. Atmospheric Terrestrial Phys., 32 (5), 917 (1970). DOI: 10.1016/0021-9169(70)90036-X
  12. C.W. Berry, M.R. Hashemi, M. Jarrahi. Appl. Phys. Lett., 104 (8), 081122 (2014). DOI: 10.1063/1.4866807
  13. D.S. Kim, D.S. Citrin. Appl. Phys. Lett., 88 (16), 161117 (2006). DOI: 10.1063/1.2196480
  14. H. Hirori, A. Doi, F. Blanchard, K. Tanaka. Appl. Phys. Lett., 98 (8), 091106 (2011). DOI: 10.1063/1.3560062
  15. M.A. Belkin, F. Capasso. Phys. Scr., 90 (11), 118002 (2015). DOI: 10.1088/0031- 8949/90/11/118002
  16. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A.G. Davies, E.H. Linfield. Electron. Lett., 50 (4), 309 (2014). DOI: 10.1049/el.2013.4035
  17. Q. Lu, M. Razeghi. Photonics, 3 (3), 42 (2016). DOI: 10.3390/photonics3030042
  18. M.A. Dem'yanenko, D.G. Esaev, V.N. Ovsyuk, B.I. Fomin, A.L. Aseev, B.A. Knyazev, G.N. Kulipanov, N.A. Vinokurov. J. Opt. Technol., 76 (12), 739 (2009). DOI: 10.1364/JOT.76.000739
  19. D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Genereux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupre, N. Blanchard, M. Bolduc, C. Chevalier, D.D'Amato, Y. Desroches, F. Duchesne, L. Gagnon, S. Ilias, H. Jerominek, F. Lagace, J. Lambert, F. Lamontagne, L.L. Noc, A. Martel, O. Pancrati, J.-E. Paultre, T. Pope, F. Proven cal, P. Topart, C. Vachon, S. Verreault, A. Bergeron. J. Infrared Milli Terahz Waves, 36 (10), 922 (2015). DOI: 10.1007/s10762-015-0181-5
  20. S. Zwerdling, R.A. Smith, J.P. Theriault. Infrared Phys., 8 (4), 271 (1968). DOI: 10.1016/0020-0891(68)90036-5
  21. Handbook of Optics. Vol. I. Fundamentals, Techniques and Design, ed. by M. Bass, E.W. Van Stryland, D.R. Williams, W.L. Wolfe. --- 2nd ed. (McGraw-Hill, NY.-San Francisco-Washington, D.C. --- etc, 1995)
  22. A.D. Polyanin, V.F. Zaitsev. Handbook of Exact Solutions for Ordinary Differential Equations (Chapman \& Hall/CRC, Boca Raton-London-NY.-Washington, D.C. 2003)
  23. M.A. Dem'yanenko, A.F. Kravchenko, V.N. Ovsyuk. Avtometriya, 41 (5), 108 (2005) (in Russian)
  24. V.Sh. Aliev, M.A. Dem'yanenko, D.G. Esaev, I.V. Marchishin, V.N. Ovsyuk, B.I. Fomin. Uspekhi prikladnoi fiziki, 1 (4), 471 (2013) (in Russian)
  25. M.A. Dem'yanenko, B.I. Fomin, L.L. Vasilieva, S.A. Volkov, I.V. Marchishin, D.G. Esaev, V.N. Ovsyuk, V.L. Dshkhunyan, E.B. Volodin, A.V. Ermolov, P.P. Usov, V.P. Chesnokov, Yu.S. Chetverov, P.N. Kudryavtsev, A.E. Zdobnikov, A.A. Ignatov. Prikladnaya fizika, 4, 124 (2010) (in Russian)
  26. P. Eriksson, J.Y. Andersson, G. Stemme. J. Microelectromechanical Systems, 6 (1), 55 (1997)
  27. C. Kittel. Introduction to Solid State Physics, 8th Edition. (John Wiley and Sons, NY., 2005)
  28. F.H. Schofield. Proceed. Royal Society A: Mathematical, Phys. Engineer. Sci., 107 (742), 206 (1925). DOI: 10.1098/rspa.1925.0016
  29. F. Niklaus, A. Decharat, C. Jansson, G. Stemme. Infrared Phys. Technol., 51 (3), 168 (2008). DOI: 10.1016/j.infrared.2007.08.001
  30. M. Kohin, N. Butler. Proc. SPIE, 5406, 447 (2004). DOI: 10.1117/12.542482
  31. J.J. Yon, A. Astier, S. Bisotto, G. Chamingi s, A. Durand, J.L. Martin, E. Mottin, J.L. Ouvrier-Buffet, J.L. Tissot. Proc. SPIE, 5783, 432 (2005). DOI: 10.1117/12.606487
  32. D. Svard, C. Jansson, A, Alvandpour. Analog Integr Circ Sig Process, 77 (1), 29 (2013). DOI: 10.1007/s10470-013-0116-9
  33. A. Tanaka, K. Chiba, T. Endoh, K. Okuyama, A. Kawahara, K. Iida, N. Tsukamoto. Proc. SPIE, 4130, 160 (2000). DOI: 10.1117/12.409858
  34. B.S. Williams. Nature Photon., 1 (9), 517 (2007). DOI: 10.1038/nphoton.2007.166
  35. C.H. Hwang, C.B. Kim, Y.S. Lee, H.C. Lee. Electron. Lett., 44 (12), 732 (2008). DOI: 10.1049/el:20080879
  36. S. Ajmera, J. Brady, C. Hanson, T. Schimert, A.J. Syllaios, M. Taylor. Proc. SPIE, 8012, 80121L (2011). DOI: 10.1117/12.884249
  37. J.L. Tissot, C. Trouilleau, B. Fieque, A. Crastes, O. Legras. Opto-Electron. Rev., 14 (1), 25 (2006). DOI: 10.2478/s11772-006-0004-2
  38. F. Simoens, M. Tchagaspanian, A. Arnaud, P. Imperinetti, G. Chammings, J.J. Yon, J.L. Tissot. Proc. SPIE, 6542, 65421T (2007). DOI: 10.1117/12.719310

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru