Effect of nanotubes on the electrical and mechanical properties of chitosan films
Kamalov A. M.1, Kodolova-Chukhontseva V. V.1, Dresvyanina E.N.2, Maslennikova T. P.3, Dobrovolskaya I. P.4, Ivan'kova E. M.4, Popova E. N.4, Smirnova V. E.4, Yudin V. E. 4
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2St. Petersburg State University of Industrial Technologies and Design, St. Petersburg, Russia
3Grebenschikov Institute of Silicate Chemistry RAS, Saint-Petersburg, Russia
4Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
Email: spb.kamalov@gmail.com

PDF
Using the methods of X-ray diffraction and scanning electron microscopy, the structure of composite films based on chitosan and single-wall carbon tubes has been studied. It is shown that the introduction of carbon nanotubes leads to the ordering of the chitosan structure. Increase in concentration of nanotubes (from 0 to 3%) causes rise in the value of storage modulus from 3 to 4 GPa (DMA data), increase in electrical conductivity of samples (from 10-11 to 102 S/m), and some changes in their dielectric permittivity (from 5.5. to 26 at an electrical field frequency of 1 kHz). Data on the ionic and electronic components of the conductivity of the composite film are presented. Keywords: chitosan, electrical conductivity, nanotubes, dielectric constant, composite.
  1. T.G. Vladkova. Int. J. Polym. Sci., 2010, 1 (2010). DOI: 10.1155/2010/296094
  2. Z. Liu, X. Wan, Z.L. Wang, L. Li. Adv. Mater., 33, 2007429 (2021). DOI: 10.1002/adma.202007429
  3. P. Morgan. Carbon Fibers and Their Composites (CRC Press, 2005). DOI: 10.1201/9781420028744
  4. I.V. Mitrofanova, I.V. Milto, I.V. Suhodolo, G.Y. Vasyukov. Bull. Sib. Med., 13, 135 (2014). DOI: 10.20538/1682-0363-2014-1-135-144
  5. B. Guo, P.X. Ma. Biomacromolecules, 19, 1764 (2018). DOI: 10.1021/acs.biomac.8b00276
  6. V.V. Matrenichev, P.V. Popryadukhin, A.E. Kryukov, N.V. Smirnova, E.M. Ivan'kova, I.P. Dobrovol'skaya, V.E. Yudin. Polym. Sci. Ser. A, 60, 215 (2018). DOI: 10.1134/S0965545X18020104
  7. J. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima. J. Am. Chem. Soc., 130, 16778 (2008). DOI: 10.1021/ja805570f
  8. J. Cheng, M.J. Meziani, Y.-P. Sun, S.H. Cheng. Toxicol. Appl. Pharmacol., 250, 184 (2011). DOI: 10.1016/j.taap.2010.10.012
  9. B. Pan, D. Cui, P. Xu, C. Ozkan, G. Feng, M. Ozkan, T. Huang, B. Chu, Q. Li, R. He, G. Hu, Nanotechnology, 20, 125101 (2009). DOI: 10.1088/0957-4484/20/12/125101
  10. A. Abarrategi, M.C. Gutierrez, C. Moreno-Vicente, M.J. Hortiguela, V. Ramos, J.L. Lopez-Lacomba, M.L. Ferrer, F. del Monte. Biomaterials, 29, 94 (2008). DOI: 10.1016/j.biomaterials.2007.09.021
  11. G.S. Lorite, L. Yla-Outinen, L. Janssen, O. Pitkanen, T. Joki, J.T. Koivisto, M. Kellomaki, R. Vajtai, S. Narkilahti, K. Kordas. Nano Res., 12, 2894 (2019). DOI: 10.1007/s12274-019-2533-2
  12. V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, L. Ballerini. Nano Lett., 5, 1107 (2005). DOI: 10.1021/nl050637m
  13. M. Rouabhia, H. Park, S. Meng, H. Derbali, Z. Zhang. PLoS One, 8, 1 (2013). DOI: 10.1371/journal.pone.0071660
  14. B. Reid, M. Zhao. Adv. Wound Care, 3, 184 (2014). DOI: 10.1089/wound.2013.0442
  15. M.N. Ravi Kumar. React. Funct. Polym., 46, 1 (2000). DOI: 10.1016/S1381-5148(00)00038-9
  16. E. Stewart, N.R. Kobayashi, M.J. Higgins, A.F. Quigley, S. Jamali, S.E. Moulton, R.M.I. Kapsa, G.G. Wallace, J.M. Crook. Tissue Eng. Pt. C-Meth., 21, 385 (2015). DOI: 10.1089/ten.tec.2014.0338
  17. J. Yang, G. Choe, S. Yang, H. Jo, J.Y. Lee. Biomater. Res., 20, 1 (2016). DOI: 10.1186/s40824-016-0078-y
  18. B. Huang. Biomanufacturing Rev., 5, 1 (2020). DOI: 10.1007/s40898-020-00009-x
  19. I.P. Dobrovol'skaya, P.V. Popryadukhin, A.Y. Khomenko, E.N. Dresvyanina, V.E. Yudin, V.Y. Elokhovskii, S.N. Chvalun, N.N. Saprykina, T.P. Maslennikova, E.N. Korytkova. Polym. Sci. Ser. A, 53, 418 (2011). DOI: 10.1134/S0965545X11050038
  20. I.P. Dobrovol'skaya, L.I. Slutsker, Z.Yu. Cherejskij, L.E. Utevskij. Vysokomolek. soed. A, 17 (7), 1555 (1975) (in Russian)
  21. E.N. Dresvyanina, S.F. Grebennikov, I.P. Dobrovol'skaya, T.P. Maslennikova, E.M. Ivan'kova, V.E. Yudin. Polym. Sci. Ser. A, 62, 205 (2020). DOI: 10.1134/S0965545X20030050
  22. A. Kamalov, E. Dresvyanina, M. Borisova, N. Smirnova, K. Kolbe, V. Yudin. Mater. Today Proc., 30, 798 (2020). DOI: 10.1016/j.matpr.2020.02.346
  23. C. Gabriel, S. Gabriel, E. Corthout. Phys. Med. Biol., 41, 2231 (1996). DOI: 10.1088/0031-9155/41/11/001
  24. B. Tsai, H. Xue, E. Birgersson, S. Ollmar, U. Birgersson. J. Electr. Bioimpedance, 10, 14 (2019). DOI: 10.2478/joeb-2019-0003
  25. J.C. Maxwell. A Treatise on Electricity and Magnetism (Cambridge Univer. Press, Cambridge, 2010)
  26. X. Xia, Z. Zhong, G.J. Weng. Mech. Mater., 109, 42 (2017). DOI: 10.1016/j.mechmat.2017.03.014
  27. K.W. Wagner. Archiv f. Elektrotechnik, 2, 371 (1914). DOI: 10.1007/BF01657322
  28. S. Bonardd, E. Robles, I. Barandiaran, C. Saldias, A. Leiva, G. Kortaberria. Carbohydr. Polym., 199, 20 (2018). DOI: 10.1016/j.carbpol.2018.06.088
  29. E.N. Dresvyanina, I.P. Dobrovol'skaya, V.E. Smirnov, E.N. Popova, E.N. Vlasova, V.E. Yudin. Polym. Sci. Ser. A, 60, 179 (2018). DOI: 10.1134/S0965545X18020049

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru