Features of laser ablation of porous silicon in air
Mavreshko E. I.1,2, Fronya A. A.1,2, Tikhonowski G. V.1, Grigoryeva M. S.1,2, Zavestovskaya I. N.3,1,2
1National Research Nuclear University “MEPhI”, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
3National Research Center “Kurchatov Institute”, Moscow, Russia
Email: EGOR.MAV@yandex.ru

PDF
The results of an experimental study of the ablation thresholds of monocrystalline and porous 77 and 96% silicon are presented. The morphology of the samples was studied after exposure to femtosecond laser radiation with a pulse energy of 1-10 μJ. The dependences of the size of the impact trace on the embedded laser energy are obtained, and the thresholds of laser ablation are determined. It has been found that at high porosity, the size of the ablation region grows faster with increasing energy than for monocrystalline silicon and silicon of lower porosity. Keywords: laser ablation, porous silicon, ablation threshold.
  1. R.K. Kankala, Y.H. Han, H.Y. Xia, S.B. Wang, A.Z. Chen. J. Nanobiotechnology, 20, 126 (2022). https://doi.org/10.1186/s12951-022-01315-x
  2. O.I. Ksenofontova, A.V. Vasina, V.V. Egorov, A.V. Bobyl, F.Yu. Soldatenkov, E.I. Terukov, V.P. Ulin, N.V. Ulin, O.I. Kiselev. Techn. Phys., 59 (1), 66 (2014). DOI: 10.1134/S1063784214010083
  3. L. Vaccari, D. Canton, N. Zaffaroni, R. Villa, M. Tormen, E. di Fabrizio. Microelectron. Eng., 83 (4-9), 1598 (2006). https://doi.org/10.1016/j.mee.2006.01.113
  4. I. Roy, S. Krishnan, A.V. Kabashin, I.N. Zavestovskaya, P.N. Prasad. ACS Nano, 16 (4), 5036 (2022). DOI: 10.1021/acsnano.1c10550
  5. V.K. Tishchenko, V.M. Petriev, A.A. Mikhailovskaya, O.A. Smoryzanova, A.V. Kabashin, I.N. Zavestovskaya. J. Phys.: Conf. Ser., 1439, 012035 (2020). DOI: 10.1088/1742-6596/1439/1/012035
  6. A.A. Ischenko, G.V. Fetisov, L.A. Aslanov. Nanosilicon: properties, synthesis, applications, methods of analysis and control (in Russian). (Fizmatlit, Moscow, 2011). ISBN: 978-5-9221-1369-4
  7. T. Baati, A. Al-Kattan, M.A. Esteve, L. Njim, Yu. Ryabchikov, F. Chaspoul, M. Hammami, M. Sentis, A.V. Kabashin, D. Braguer. Sci. Rep., 6, 25400 (2016). https://doi.org/10.1038/srep25400
  8. A.Y. Kharin, M.S. Grigoryeva, I.N. Zavestovskaya, V.Y. Timoshenko. Laser Phys. Lett., 18, 076001 (2021). https://doi.org/10.1088/1612-202X/ac0914
  9. S.A. Uspenskii, P.A. Khaptakhanova, A.A. Zaboronok, T.S. Kurkin, O.Y. Volkova, L.V. Mechetina, A.V. Taranin, V.V. Kanygin, M. Akira, S.Y. Taskaev. Dokl. Chem., 491, 45 (2020). https://doi.org/10.1134/S0012500820030027
  10. K.O. Aiyyzhy, E.V. Barmina, N.N. Melnik, O.V. Uvarov, G.A. Shafeev. Bull. Lebedev Physics Institute, 50:suppl., S60 (2023). https://doi.org/10.3103/S106833562313002X
  11. N.P. Bezhenar, A.A. Shulzhenko, S.A. Bozhko, G.S. Oleynik. Phys. Technol. High Press., 17 (1), 21 (2007). (in Russian)
  12. A.V. Skobelkina, F.V. Kashaev, A.V. Kolchin, D.V. Shuleiko, T.P. Kaminskaya, D.E. Presnov, L.V. Golovan, P.K. Kashkarov. Techn. Phys. Lett., 46, 687 (2020). https://doi.org/10.1134/S1063785020070263
  13. Y. Wang, M. Zhang, Y. Huang, X. Cao, Y. Dong, J. Zhao, Y. Li, Y. Wang. Optics Commun., 523, 128608 (2022). https://DOI.org/10.1016/j.optcom.2022.128608
  14. J.M. Liu. Optics Lett., 7, 196 (1982). http://dx.doi.org/10.1364/ol.7.000196

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru