Anisotropy of polarization of interband photoluminescence in n-InAs induced by electric field
Adamov R. B.
1, Vinnichenko M. Ya.
1, Kharin N. Yu.
1, Karaulov D.A.
1, Firsov D. A.
11Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: roma.adamow@gmail.com, mvin@spbstu.ru, harin_nyu@spbstu.ru, donil793@yandex.ru, dmfir@rphf.spbstu.ru
The degree of linear polarization of interband photoluminescence in an InAs crystal doped with donors in an electric field was calculated. The polarization anisotropy arises due to the anisotropy of the electron distribution function over states in momentum space, associated with the electron drift in the electric field, and the dependence of the optical matrix elements on the angle between the polarization vector and the electron wave vector. A quasi-equilibrium distribution function shifted in velocity space was used. The electron temperature was determined from the power balance equation. The effect of nonequilibrium phonon accumulation was taken into account in calculating the rate of energy loss by hot electrons. The nonparabolicity of the conduction band was taken into account using the Kane dispersion law. Keywords: distribution function anisotropy, interband photoluminescence, polarization anisotropy, electron temperature.
- C.V. Shah, B.P. Zakharchenya. Spectroscopy of nonequilibrium electrons and phonons (Modern Problems in Condensed Matter Sciences). (Elsevier, Amsterdam, 1992). https://doi.org/10.1016/C2009-0-13015-5
- K. Jarusirirangsi, P. van Dommelen, C. Daengngam. J. Nanomater., 2021 (1), 5606173 (2021). https://doi.org/10.1155/2021/5606173
- E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructure (Alpha Science, 2005)
- T. Trupke, R.A. Bardos, M.D. Abbott. Appl. Phys. Lett., 87, 184102 (2005). http://dx.doi.org/10.1063/1.2119411
- Ch.H. Lui, K.F. Mak, J. Shan, T.F. Heinz. Phys. Rev. Lett., 105, 127404 (2010). https://doi.org/10.1103/PhysRevLett.105.127404
- J.A. Ferrer-Perez, B. Claflin, D. Jena, M. Sen, R. Vetury, D. Dorsey. J. Electron. Mater., 43 (2), 341 (2014). https://doi.org/10.1007/s11664-013-2841-3
- C. Zhang, Y. Luo, S.A. Maier, X. Li. Laser Photonics Rev., 16 (6), 2100714 (2022). https://doi.org/10.1002/lpor.202100714
- W. Shao, W. Cui, Y. Xin, J. Hu, X. Li. Nanotechnology, 35 (27), 275201 (2024). https://doi.org/10.1088/1361-6528/ad3739
- L. Zhou, Q. Huang, Y. Xia. Chem. Rev., 124 (14), 8597 (2024). https://doi.org/10.1021/acs.chemrev.4c00165
- S. Sarkar, I. W. Un, Y. Sivan, Y. Dubi. New J. Phys., 24 (5), 053008 (2022). https://doi.org/10.1088/1367-2630/ac6688
- B.P. Zakharchenya, D.N. Mirlin, V.I. Perel', I.I. Reshina. Sov. Phys. Uspekhi, 25, 143 (1982). https://doi.org/10.1070/PU1982v025n03ABEH004519
- M.A. Vasil'eva, L.E. Vorob'ev, V.I. Stafeev. Sov. Phys. Semicond., 3, 1374 (1969)
- M.D. Yang, Y.P. Chen, G.W. Shu, J.L. Shen, S. C. Hung, G.C. Chi, T.Y. Llin, Y.C. Lee, C.T. Chen, C.H. Ko. Appl. Phys. A, 90, 123 (2008). https://doi.org/10.1007/s00339-007-4281-5
- V.A. Shalygin, I.S. Makhov, R.B. Adamov, M.Y. Vinnichenko, V.P. Khvostikov, D.A. Firsov. J. Appl. Phys., 136, 195703 (2024). https://doi.org/10.1063/5.0233573
- C.A. Baumgardner, O.W. Truman. Phys. Rev., 173 (3), 746 (1968). https://doi.org/10.1103/PhysRev.173.746
- E.M. Conwell. High field transport in semiconductors (Academic Press, N.Y.-London, 1967)
- L.E. Vorob'ev, F.I. Osokin. Sov. Phys. Semicond., 13, 873 (1979)
- D.J. Lockwood, G. Yu, N.L. Rowell. Solid State Commun., 136 (7), 404 (2005). https://doi.org/10.1016/j.ssc.2005.08.030
- H. Hamzeh, F. Aniel. J. Appl. Phys., 109 (6), 063511 (2011). https://doi.org/10.1063/1.3553409
- M.P. Hasselbeck, P.M. Enders. Phys. Rev. B, 57, 9674 (1998). https://doi.org/10.1103/PhysRevB.57.9674
- N.A. Masyukov, A.V. Dmitriev. J. Appl. Phys., 109 (2), 023706 (2011). https://doi.org/10.1063/1.3533981
- I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. J. Appl. Phys. 89, 5815 (2001). https://doi.org/10.1063/1.1368156
- T. Edvinss. R. Soc. Open Sci., 5 (9), 180387 (2018). http://doi.org/10.1098/rsos.180387
- F. Bassani, G.L. Liedl, P. Wyder. Encyclopedia of condensed matter physics (Elsevier, Oxford, 2005). 8.810 https://www.sciencedirect.com/referencework/9780123694010/ encyclopedia-of-condensed-matter-physics
- B.R. Bennett, G.M. Ancona, J.B. Boos. MRS Bull., 34 (7), 530 (2009). https://doi.org/10.1557/mrs2009.141
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.