Local doping of monolayer WSe2 on piezoelectric GaInP2 and GaN substrates
Aksenov V. Yu 1, Ankudinov A. V.1, Vlasov A. S.1, Dunaevsky M. S.1, Jmerik V. N.1, Lebedev D. V.1, Likhachev K. V.1, Pereskokova V. A.1, Mintairov A. M.1
1Ioffe Institute, St. Petersburg, Russia
Email: axenov.v@gmail.com, alex_ank@mail.ru, vlasov@scell.ioffe.ru, mike.dunaeffsky@mail.ioffe.ru, jmerik@pls.ioffe.rssi.ru, lebedev_84@mail.ru, kirilll28.1998@gmail.com, pereskokova.valeria@mail.ru, amintairov@mail.ioffe.ru

PDF
Non-contact local doping of monolayer WSe2 transferred to piezoelectric epitaxial structures based on InP/GaInP2 and GaN, having surface potential variations with an amplitude of ~ 0.1 B and a size of ~ 0.2-1 μm is shown. Using scanning probe microscopy surface potential measurements, as well as optical reflectance, photoluminescence, and Raman spectroscopy measurements we observed variations in charged exciton (trion) emission/reflectance and Raman intensity due to variations in the surface potential of WSe2 monolayers, indicating local doping at n~1012 cm-2. Our results can be used to create Wigner quantum dots in transition metal dichalcogenides, which is promising for the development of fault-tolerant topological quantum computing at room temperature and without a magnetic field. Keywords: 2D semiconductors, local doping, optical spectroscopy, Kelvin probe, microscopy.
  1. F. Wilczek. Phys. Rev. Lett., 49 (14), 957 (1982). DOI: 10.1103/PhysRevLett.49.957
  2. A.Y. Kitaev. Annals of Physica, 303 (1), 2 (2003). DOI: 10.1016/S0003-4916(02)00018-0
  3. S.D. Sarma, M. Freedman, C. Nayak. npj Quant. Information, 1 (15001), 1 (2015). DOI: 10.1038/npjqi.2015.1
  4. A.M. Mintairov, D.V. Lebedev, A.S. Vlasov, A.O. Orlov, G.L. Snider, A. Blundell. Sci. Rep., 12, 21440-14 (2021). DOI: 10.1038/s41598-021-00859-6
  5. D.C. Tsui. H.L. Stormer, A.C. Gossard. Phys. Rev. Lett., 48 (22), 1559 (1982). DOI: 0.1103/PhysRevLett.48.1559
  6. D. Monroe, Y.H. Xie, E.A. Fitzgerald, P.J. Silverman. Phys. Rev. B, 46 (12), 7935 (1992). DOI: 10.1103/PhysRevB.46.7935
  7. A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, M. Kawasaki. Nature Materials, 9, 889 (2010). DOI: 10.1038/nmat2874
  8. M.J. Manfra, N.G. Weimann, J.W.P. Hsu, L.N. Pfeiffer, K.W. West, S. Syed, H.L. Stormer, W. Pan, D.V. Lang, S.N.G.Chu, G. Kowach, A.M. Sergent, J. Caissie, K.M. Molvar, L.J. Mahoney, R.J. Molnar. J. Appl. Phys., 92 (1), 338 (2002). DOI: 10.1063/1.1484227
  9. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim. PNAS, 102 (30), 10451 (2005). DOI: 10.1073/pnas.050284810210451
  10. X. Du, I. Skachko, F. Duerr, A. Luican, E.Y. Andrei. Nature, 462 (12), 192 (2009). DOI: 10.1038/nature08522
  11. Q. Shi, E.-M. Shih, M.V. Gustafsson, D.A. Rhodes, B. Kim, K. Watanabe, T. Taniguchi, Z. Papic, J. Hone, C.R. Dean. Nature Nanotechnol., 15, 569 (2020). DOI: 10.1038/s41565-020-0685-6
  12. S. Kumar, M. Pepper, S.N. Holmes, H. Montagu, Y. Gul, D.A. Ritchie, I. Farrer. Phys. Rev. Lett., 122 (8), 086803-5 (2019). DOI: 10.1103/PhysRevLett.122.086803
  13. J.-X. Yin, Z. Wu, J.-H. Wang, Z.-Y. Ye, J. Gong, X.-Y. Hou, L. Shan, A. Li, X.-J. Liang, X.-X. Wu, J. Li, C.-S. Ting, Z.-Q. Wang, J.-P. Hu, P.-H. Hor, H. Ding, S. H. Pan. Nature Physics, 11, 543 (2015). DOI: 10.1038/nphys3371
  14. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan. Nature Materials, 12, 207 (2013). DOI: 10.1038/nmat3505
  15. J. Boddison-Chouinard, A. Bogan, N. Fong, K. Watanabe, T. Taniguchi, S. Studenikin, A. Sachrajda, M. Korkusinski, A. Altintas, M.Bieniek, P. Hawrylak, A. Luican-Mayer, L. Gaudreau. Appl. Phys. Lett., 119 (13), 133104 (2021). DOI: 10.1063/5.0062838
  16. S. Davari, J. Stacy, A.M. Mercado, J.D. Tull, R. Basnet, K. Pandey, K. Watanabe, T. Taniguchi, J. Hu, H.O.H. Churchill1. Phys. Rev. Appl., 13, 054058-8 (2020). DOI: 10.1103/PhysRevApplied.13.054058
  17. F. Riche, H. Braganc, F. Qu, V. Lopez-Richard, S.J. Xie, A.C. Dia, G.E. Marques. J. Phys.: Condens. Matter, 32, 365702-10 (2020). DOI: 10.1088/1361-648X/ab8fd4
  18. A.V. Ankudinov, N.A. Bert, M.S. Dunaevskiy, A.I. Galimov, N.A. Kalyuzhnyy, S.A. Mintairov, A.V. Myasoedov, N.V. Pavlov, M.V. Rakhlin, R.A. Salii, A.A. Toropov, A.S. Vlasov, E.V. Pirogov, M.A. Zhukovskyi, A.M. Mintairov. Appl. Phys. Lett., 124, 052101 (2024). DOI: 10.1063/5.0172579
  19. A.M. Mintairov, J. Kapaldo, J.L. Merz, S. Rouvimov, D.V. Lebedev, N.A. Kalyuzhnyy, S.A. Mintairov, K.G. Belyaev, M.V. Rakhlin, A.A. Toropov, P.N. Brunkov, A.S. Vlasov, Yu.M. Zadiranov, S.A. Blundell, A.M. Mozharov, I. Mukhin, M. Yakimov, S. Oktyabrsky, A.V. Shelaev, V.A. Bykov. Phys. Rev. B, 97 (97), 195443-9 (2018). DOI: 10.1103/PhysRevB.97.195443
  20. A.M. Mintairov, A.V. Ankundinov, N.A. Kalyuzhnyy, D.V. Lebedev, S.A. Mintairov, N.V. Pavlov, A.I. Galimov, M.V. Rakhlin, R.A. Salii, A.A. Toropov, A.S. Vlasov, D. Barettin, M. Auf der Maur, S.A. Blundell. Appl. Phys. Lett., 118, 121101-6 (2021). DOI: 10.1063/5.0045925
  21. V.N. Jmerik, D.V. Nechaev, S.V. Ivanov. In Molecular Beam Epitaxy: From research to mass production, ed. by M. Henini. 2nd edn (Elsevier Inc., 2018) p. 135
  22. A.M. Mintairov, J.L. Merz, A.S. Vlasov. Phys. Rev. B, 67 (20), 205211-7 (2003). DOI: 10.1103/PhysRevB.67.205211
  23. H. Terrones, E. Del Corro, S. Feng, J.M. Poumirol, D. Rhodes, D. Smirnov, N.R. Pradhan, Z. Lin, M.A.T. Nguyen, A.L. El as, T.E. Mallouk, L. Balicas, M.A. Pimenta, M. Terrones. Sci. Rep., 4, 4215-9 (2014). DOI: 10.1038/srep04215
  24. S. Roy, X. Yang, J. Gao. Adv. Photon. Res., 5 (4), 2300220-6 (2024). DOI: 10.1002/adpr.202300220
  25. K. He, N. Kumar, L. Zhao, Z. Wang, K. Fai Mak, H. Zhao, J. Shan. Phys. Rev. Lett., 113, 026803-5 (2014). DOI: 10.1103/.113.026803
  26. T.Y. Jeong, S.-Y. Lee, S. Jung, K.J. Yee. Current Appl. Phys., 20 (2), 272 (2020). DOI: 10.1016/j.cap.2019.11.016
  27. B. Aslan, M. Deng, T.F. Heinz. Phys. Rev. B, 98 (11), 15308-6 (2018). DOI: 10.1103/PhysRevB.98.115308
  28. E. de Coro, H. Terrones, A. Elias, C. Fantini, S. Feng, M.A. Nguyen, T.E. Mallouk, M. Terrones, M.A. Pimenta. ACS Nano, 8 (9), 9629 (2014). DOI: 10.1021/nn504088g
  29. H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong, Xi. Wang, J.M. Weisse, C.H. Lee, J. Zhao, P.M. Ajayan, J. Li, H.C. Manoharan, X. Zheng. Nature Commun., 6, 7381-6 (2015). DOI: 10.1038/ncomms8381
  30. A. Branny, S. Kumar, R. Proux, B.D. Gerardot. Nature Commun., 8, 15053-7 (2017). DOI: 10.1038/ncomms15053
  31. C. Palacios-Berraquero, D.M. Kara, A.R.-P. Montblanch, M. Barbone, P.l. Latawiec, D. Yoon, A.K. Ott, M. Loncar, A.C. Ferrari, M. Atature. Nature Commun., 8, 15093-6 (2017). DOI: 10.1038/ncomms15093

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru