Вышедшие номера
Мультирезонансные люминофоры, основанные на эффекте термически-активированной задержанной флуоресценции, для органических светодиодов третьего и четвертого поколений (обзор)
Российский научный фонд, 24 49-02038
Доминский Д.И. 1,2, Харланов О.Г.1, Паращук Д.Ю. 1
1Московский государственный университет им. М.В. Ломоносова (физический факультет), Москва, Россия
2Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН, Москва, Россия
Email: di.dominskiy@physics.msu.ru, kharlanov@physics.msu.ru, paras@physics.msu.ru
Поступила в редакцию: 7 июля 2024 г.
В окончательной редакции: 7 июля 2024 г.
Принята к печати: 29 июля 2024 г.
Выставление онлайн: 25 октября 2024 г.

Представлен обзор последних достижений в области наиболее перспективных люминофоров, проявляющих эффект задержанной флуоресценции, для органических светодиодов - мультирезонансных люминофоров, которые отличает от других типов органических люминофоров узкая ширина полосы излучения. Дан краткий обзор поколений органических светодиодов, изложены принципы работы мультирезонансных люминофоров, особенности их строения и их фотофизические и люминесцентные свойства. Проанализированы достижения и проблемы в области мультирезонансных люминофоров и обсуждаются подходы к их молекулярному дизайну. Ключевые слова:
  1. В.М. Агранович, Теория экситонов (Наука, Москва, 1968). [V.M. Agranovich. Theory of excitons (Nauka, Moscow, 1968).]
  2. T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta. Adv. Mater., 28 (14), 2777 (2016). DOI: 10.1002/adma.201505491
  3. S. Madayanad Suresh, D. Hall, D. Beljonne, Y. Olivier, E. Zysman-Colman. Adv. Funct. Mater., 30 (33), 1908677 (2020). DOI: 10.1002/adfm.201908677
  4. H.J. Kim, T. Yasuda. Adv. Opt. Mater., 10 (22), 2201714 (2022). DOI: 10.1002/adom.202201714
  5. M. Mamada, M. Hayakawa, J. Ochi, T. Hatakeyama. Chem. Soc. Rev., 53 (3), 1624 (2024). DOI: 10.1039/D3CS00837A
  6. M. Furno, R. Meerheim, S. Hofmann, B. Lssem, K. Leo. Phys. Rev. B, 85 (11), 115205 (2012). DOI: 10.1103/PhysRevB.85.115205
  7. H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi. Nat. Commun., 6 (1), 8476 (2015). DOI: 10.1038/ncomms9476
  8. H. Yersin, L. Mataranga-Popa, R. Czerwieniec, Y. Dovbii. Chem. Mat., 31 (16), 6110 (2019). DOI: 10.1021/acs.chemmater.9b01168
  9. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi. Nature, 492 (7428), 234 (2012). DOI: 10.1038/nature11687
  10. O. Sachnik, Y. Li, X. Tan, J.J. Michels, P.W.M. Blom, G.-J.A.H. Wetzelaer. Adv. Mater., 35 (26), e2300574 (2023). DOI: 10.1002/adma.202300574
  11. E. Tankelevivciute, I.D.W. Samuel, E. Zysman-Colman. J. Phys. Chem. Lett., 15 (4), 1034 (2024). DOI: 10.1021/acs.jpclett.3c03317
  12. H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi. Nat. Commun., 5 (1), 4016 (2014). DOI: 10.1038/ncomms5016
  13. N. Aizawa, Y.-J. Pu, Y. Harabuchi, A. Nihonyanagi, R. Ibuka, H. Inuzuka, B. Dhara, Y. Koyama, K.I. Nakayama, S. Maeda, F. Araoka, D. Miyajima. Nature, 609 (7927), 502 (2022). DOI: 10.1038/s41586-022-05132-y
  14. Y. Lee, J. Kim, S. Lee, E. Sim, J.-I. Hong. Chem. Eng. J., 476 146659 (2023). DOI: 10.1016/j.cej.2023.146659
  15. R. Pollice, P. Friederich, C. Lavigne, G.d.P. Gomes, A. Aspuru-Guzik. Matter, 4 (5), 1654 (2021). DOI: 10.1016/j.matt.2021.02.017
  16. R. Pollice, B. Ding, A. Aspuru-Guzik. Matter, 7 (3), 1161 (2024). DOI: 10.1016/j.matt.2024.01.002
  17. S. Shao, J. Hu, X. Wang, L. Wang, X. Jing, F. Wang. J. Am. Chem. Soc., 139 (49), 17739 (2017). DOI: 10.1021/jacs.7b10257
  18. S. Shao, L. Wang. Aggregate, 1 (1), 45 (2020). DOI: 10.1002/agt2.4
  19. X. Lv, Y. Wang, N. Li, X. Cao, G. Xie, H. Huang, C. Zhong, L. Wang, C. Yang. Chem. Eng. J., 402, 126173 (2020). DOI: 10.1016/j.cej.2020.126173
  20. T. Huang, Q. Wang, G. Meng, L. Duan, D. Zhang. Angew. Chem. Int. Ed., 61 (12), e202200059 (2022). DOI: 10.1002/anie.202200059
  21. Z. Zhao, C. Zeng, X. Peng, Y. Liu, H. Zhao, L. Hua, S.-J. Su, S. Yan, Z. Ren. Angew. Chem. Int. Ed., 61 (39), e202210864 (2022). DOI: 10.1002/anie.202210864
  22. Q. Zheng, X.-Q. Wang, Y.-K. Qu, G. Xie, L.-S. Liao, Z.-Q. Jiang. npj flex. electron., 6 (1), 83 (2022). DOI: 10.1038/s41528-022-00212-5
  23. J. Liu, Z. Feng, C. Peng, Y. Yu, S. Yang, Z. Jiang, L. Liao. Chin. Chem. Lett., 34 (6), 107634 (2023). DOI: 10.1016/j.cclet.2022.06.057
  24. M.Y. Wong, E. Zysman-Colman. Adv. Mater., 29 (22), 1605444 (2017). DOI: 10.1002/adma.201605444
  25. Р. Догерти, М. Дьюар, Теория возмущений молекулярных орбиталей в органической химии (Москва: Мир, Москва, 1977). [M.J.S. Dewar, R.C. Dougherty. The PMO Theory of Organic Chemistry (Springer US, 1975).]
  26. Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama. Nat. Photonics, 13 (10), 678 (2019). DOI: 10.1038/s41566-019-0476-5
  27. I.S. Park, M. Yang, H. Shibata, N. Amanokura, T. Yasuda. Adv. Mater., 34 (9), 2107951 (2022). DOI: 10.1002/adma.202107951
  28. K. Rayappa Naveen, H. Lee, R. Braveenth, K. Joon Yang, S. Jae Hwang, J. Hyuk Kwon. Chem. Eng. J., 432, 134381 (2022). DOI: 10.1016/j.cej.2021.134381
  29. C.A. Coulson, J.E. Lennard-Jones. Proc. R. soc. Lond. Ser. A-Contain. Pap. Math. Phys., 169 (938), 413 (1939). DOI: 10.1098/rspa.1939.0006
  30. R. Keruckiene, A.A. Vaitusionak, M.I. Hulnik, I.A. Berezianko, D. Gudeika, S. Macionis, M. Mahmoudi, D. Volyniuk, D. Valverde, Y. Olivier, K.L. Woon, S.V. Kostjuk, S. Reineke, J.V. Grazulevicius, G. Sini. J. Mater. Chem. C, 12 (10), 3450 (2024). DOI: 10.1039/D3TC04397E
  31. T.P. Kaloni, R.P. Joshi, N.P. Adhikari, U. Schwingenschlogl. Appl. Phys. Lett., 104 (7), 073116 (2014). DOI: 10.1063/1.4866383
  32. H. Li, S. Zhu, M. Zhang, P. Wu, J. Pang, W. Zhu, W. Jiang, H. Li. ACS Omega, 2 (9), 5385 (2017). DOI: 10.1021/acsomega.7b00795
  33. S.H. Han, J.H. Jeong, J.W. Yoo, J.Y. Lee. J. Mater. Chem. C, 7 (10), 3082 (2019). DOI: 10.1039/C8TC06575F
  34. H. Hirai, K. Nakajima, S. Nakatsuka, K. Shiren, J. Ni, S. Nomura, T. Ikuta, T. Hatakeyama. Angew. Chem. Int. Ed., 54 (46), 13581 (2015). DOI: 10.1002/anie.201506335
  35. Y. Yuan, X. Tang, X.-Y. Du, Y. Hu, Y.-J. Yu, Z.-Q. Jiang, L.-S. Liao, S.-T. Lee. Adv. Opt. Mater., 7 (7), 1801536 (2019). DOI: 10.1002/adom.201801536
  36. X. Li, Y.-Z. Shi, K. Wang, M. Zhang, C.-J. Zheng, D.-M. Sun, G.-L. Dai, X.-C. Fan, D. Q. Wang, W. Liu, Y.-Q. Li, J. Yu, X.-M. Ou, C. Adachi, X.-H. Zhang. ACS Appl. Mater. Interfaces, 11 (14), 13472 (2019). DOI: 10.1021/acsami.8b19635
  37. R.K. Konidena, K.R. Naveen. Adv. Photon. Res., 3 (11), 2200201 (2022). DOI: 10.1002/adpr.202200201
  38. H.L. Lee, W.J. Chung, J.Y. Lee. Small, 16 (14), 1907569 (2020). DOI: 10.1002/smll.201907569
  39. V.V. Patil, H.L. Lee, I. Kim, K.H. Lee, W.J. Chung, J. Kim, S. Park, H. Choi, W.-J. Son, S.O. Jeon, J.Y. Lee. Adv. Sci., 8 (20), 2101137 (2021). DOI: 10.1002/advs.202101137
  40. G. Meng, D. Zhang, J. Wei, Y. Zhang, T. Huang, Z. Liu, C. Yin, X. Hong, X. Wang, X. Zeng, D. Yang, D. Ma, G. Li, L. Duan. Chem. Sci., 13 (19), 5622 (2022). DOI: 10.1039/D2SC01543A
  41. G. Meng, X. Chen, X. Wang, N. Wang, T. Peng, S. Wang. Adv. Opt. Mater., 7 (11), 1900130 (2019). DOI: 10.1002/adom.201900130
  42. Y. Lee, J.-I. Hong. Adv. Opt. Mater., 9 (15), 2100406 (2021). DOI: 10.1002/adom.202100406
  43. J. Wei, C. Zhang, D. Zhang, Y. Zhang, Z. Liu, Z. Li, G. Yu, L. Duan. Angew. Chem. Int. Ed., 60 (22), 12269 (2021). DOI: 10.1002/anie.202017328
  44. X. Cao, K. Pan, J. Miao, X. Lv, Z. Huang, F. Ni, X. Yin, Y. Wei, C. Yang. J. Am. Chem. Soc., 144 (50), 22976 (2022). DOI: 10.1021/jacs.2c09543
  45. H.-J. Cheon, S.-J. Woo, S.-H. Baek, J.-H. Lee, Y.-H. Kim. Adv. Mater., 34 (50), 2207416 (2022). DOI: 10.1002/adma.202207416
  46. T. Fan, Y. Zhang, L. Wang, Q. Wang, C. Yin, M. Du, X. Jia, G. Li, L. Duan. Angew. Chem. Int. Ed., 61 (52), e202213585 (2022). DOI: 10.1002/anie.202213585
  47. X. He, J. Lou, B. Li, H. Wang, X. Peng, G. Li, L. Liu, Y. Huang, N. Zheng, L. Xing, Y. Huo, D. Yang, D. Ma, Z. Zhao, Z. Wang, B.Z. Tang. Angew. Chem. Int. Ed., 61 (48), e202209425 (2022). DOI: 10.1002/anie.202209425
  48. H. Lee, R. Braveenth, J.D. Park, C.Y. Jeon, H.S. Lee, J.H. Kwon. ACS Appl. Mater. Interfaces, 14 (32), 36927 (2022). DOI: 10.1021/acsami.2c10127
  49. Y.-T. Lee, C.-Y. Chan, M. Tanaka, M. Mamada, K. Goushi, X. Tang, Y. Tsuchiya, H. Nakanotani, C. Adachi. Adv. Opt. Mater., 10 (17), 2200682 (2022). DOI: 10.1002/adom.202200682
  50. J. Liu, L. Chen, X. Wang, Q. Yang, L. Zhao, C. Tong, S. Wang, S. Shao, L. Wang. Macromol. Rapid Commun., 43 (16), 2200079 (2022). DOI: 10.1002/marc.202200079
  51. T. Liu, C. Cheng, W. Lou, C. Deng, J. Liu, D. Wang, T. Tsuboi, Q. Zhang. J. Mater. Chem. C, 10 (20), 7799 (2022). DOI: 10.1039/D2TC00921H
  52. X.-F. Luo, H.-X. Ni, A.-Q. Lv, X.-K. Yao, H.-L. Ma, Y.-X. Zheng. Adv. Opt. Mater., 10 (16), 2200504 (2022). DOI: 10.1002/adom.202200504
  53. J. Park, J. Moon, J. Lim, J. Woo, S.S. Yoon, J.Y. Lee. J. Mater. Chem. C, 10 (34), 12300 (2022). DOI: 10.1039/D2TC02283D
  54. H.-J. Tan, G.-X. Yang, Y.-L. Deng, C. Cao, J.-H. Tan, Z.-L. Zhu, W.-C. Chen, Y. Xiong, J.-X. Jian, C. S. Lee, Q.-X. Tong. Adv. Mater., 34 (18), 2200537 (2022). DOI: 10.1002/adma.202200537
  55. S. Wu, A. Kumar Gupta, K. Yoshida, J. Gong, D. Hall, D.B. Cordes, A.M.Z. Slawin, I.D.W. Samuel, E. Zysman-Colman. Angew. Chem. Int. Ed., 61 (52), e202213697 (2022). DOI: 10.1002/anie.202213697
  56. C. Cao, J.-H. Tan, Z.-L. Zhu, J.-D. Lin, H.-J. Tan, H. Chen, Y. Yuan, M.-K. Tse, W. C. Chen, C.-S. Lee. Angew. Chem. Int. Ed., 62 (10), e202215226 (2023). DOI: 10.1002/anie.202215226
  57. Y. Chang, Y. Wu, X. Wang, W. Li, Q. Yang, S. Wang, S. Shao, L. Wang. Chem. Eng. J., 451 (1), 138545 (2023). DOI: 10.1016/j.cej.2022.138545
  58. G. Chen, J. Wang, W.-C. Chen, Y. Gong, N. Zhuang, H. Liang, L. Xing, Y. Liu, S. Ji, H. L. Zhang, Z. Zhao, Y. Huo, B.Z. Tang. Adv. Funct. Mater., 33 (12), 2211893 (2023). DOI: 10.1002/adfm.202211893
  59. H. Dai, J. Zhou, G. Meng, L. Wang, L. Duan, D. Zhang. Chin. J. Chem . 41 (6), 657 (2023). DOI: 10.1002/cjoc.202200693
  60. C.-Z. Du, Y. Lv, H. Dai, X. Hong, J. Zhou, J.-K. Li, R.-R. Gao, D. Zhang, L. Duan, X. Y. Wang. J. Mater. Chem. C, 11 (7), 2469 (2023). DOI: 10.1039/D2TC04952J
  61. X.-C. Fan, F. Huang, H. Wu, H. Wang, Y.-C. Cheng, J. Yu, K. Wang, X.-H. Zhang. Angew. Chem. Int. Ed., 62 (35), e202305580 (2023). DOI: 10.1002/anie.202305580
  62. Y.-N. Hu, X.-C. Fan, F. Huang, Y.-Z. Shi, H. Wang, Y.-C. Cheng, M.-Y. Chen, K. Wang, J. Yu, X. H. Zhang. Adv. Opt. Mater., 11 (3), 2202267 (2023). DOI: 10.1002/adom.202202267
  63. Y. Hu, J. Miao, C. Zhong, Y. Zeng, S. Gong, X. Cao, X. Zhou, Y. Gu, C. Yang. Angew. Chem. Int. Ed., 62 (19), e202302478 (2023). DOI: 10.1002/anie.202302478
  64. Y. Hu, M. Huang, H. Liu, J. Miao, C. Yang. Angew. Chem. Int. Ed., 62 (46), e202312666 (2023). DOI: 10.1002/anie.202312666
  65. F. Huang, X.-C. Fan, Y.-C. Cheng, H. Wu, X. Xiong, J. Yu, K. Wang, X.-H. Zhang. Angew. Chem. Int. Ed., 62 (32), e202306413 (2023). DOI: 10.1002/anie.202306413
  66. Z. Huang, H. Xie, J. Miao, Y. Wei, Y. Zou, T. Hua, X. Cao, C. Yang. J. Am. Chem. Soc., 145 (23), 12550 (2023). DOI: 10.1021/jacs.3c01267
  67. J. Jin, C. Duan, H. Jiang, P. Tao, H. Xu, W.-Y. Wong. Angew. Chem. Int. Ed., 62 (18), e202218947 (2023). DOI: 10.1002/anie.202218947
  68. H.S. Kim, H.J. Cheon, D. Lee, W. Lee, J. Kim, Y.-H. Kim, S. Yoo. Sci. Adv., 9 (22), eadf1388 (2023). DOI: doi:10.1126/sciadv.adf1388
  69. X.-J. Liao, D. Pu, L. Yuan, J. Tong, S. Xing, Z.-L. Tu, J.-L. Zuo, W.-H. Zheng, Y. X. Zheng. Angew. Chem. Int. Ed., 62 (6), e202217045 (2023). DOI: 10.1002/anie.202217045
  70. B. Lei, Z. Huang, S. Li, J. Liu, Z. Bin, J. You. Angew. Chem. Int. Ed., 62 (12), e202218405 (2023). DOI: 10.1002/anie.202218405
  71. M. Luo, W. Li, L. Lyu, D. Li, S. Du, M. Zhao, Z. Wang, J. Zhang, Y. Li, Z. Ge. Adv. Opt. Mater., 11 (2), 2202176 (2023). DOI: 10.1002/adom.202202176
  72. S. Luo, J. Wang, N. Li, X.-F. Song, X. Wan, K. Li, C. Yang. Angew. Chem. Int. Ed., 62 (49), e202310943 (2023). DOI: 10.1002/anie.202310943
  73. S. Madayanad Suresh, L. Zhang, D. Hall, C. Si, G. Ricci, T. Matulaitis, A.M.Z. Slawin, S. Warriner, Y. Olivier, I.D.W. Samuel, E. Zysman-Colman. Angew. Chem. Int. Ed., 62 (8), e202215522 (2023). DOI: 10.1002/anie.202215522
  74. G. Meng, H. Dai, J. Zhou, T. Huang, X. Zeng, Q. Wang, X. Wang, Y. Zhang, T. Fan, D. Yang, D. Ma, D. Zhang, L. Duan. Chem. Sci., 14 (4), 979 (2023). DOI: 10.1039/D2SC06343C
  75. C. Qu, Y. Zhu, L. Liang, K. Ye, Y. Zhang, H. Zhang, Z. Zhang, L. Duan, Y. Wang. Adv. Opt. Mater., 11 (8), 2203030 (2023). DOI: 10.1002/adom.202203030
  76. E. Ravindran, H.E. Baek, H.W. Son, J.H. Park, Y.-H. Kim, M.C. Suh. Adv. Funct. Mater., 33 (35), 2213461 (2023). DOI: 10.1002/adfm.202213461
  77. Z. Wang, Z. Yan, Q. Chen, X. Song, J. Liang, K. Ye, Z. Zhang, H. Bi, Y. Wang. ACS Appl. Mater. Interfaces, 15 (11), 14605 (2023). DOI: 10.1021/acsami.2c23278
  78. Y. Wang, R. Guo, A. Ying, K. Di, L. Chen, H. Gu, S. Liu, Y. Duan, H. Su, S. Gong, L. Wang. Adv. Opt. Mater., 11 (1), 2202034 (2023). DOI: 10.1002/adom.202202034
  79. K. Zhang, X. Wang, Y. Chang, Y. Wu, S. Wang, L. Wang. Angew. Chem. Int. Ed., 62 (47), e202313084 (2023). DOI: 10.1002/anie.202313084
  80. Y. Zou, M. Yu, J. Miao, T. Huang, S. Liao, X. Cao, C. Yang. Chem. Sci., 14 (12), 3326 (2023). DOI: 10.1039/D3SC00246B
  81. Y.-K. Chen, J. Lei, T.-L. Wu. Chem. Sci., 15 (26), 10146 (2024). DOI: 10.1039/D4SC02351J
  82. Y.-C. Cheng, X. Tang, K. Wang, X. Xiong, X.-C. Fan, S. Luo, R. Walia, Y. Xie, T. Zhang, D. Zhang, J. Yu, X.-K. Chen, C. Adachi, X.-H. Zhang. Nat. Commun., 15 (1), 731 (2024). DOI: 10.1038/s41467-024-44981-1
  83. W.-C. Guo, W.-L. Zhao, K.-K. Tan, M. Li, C.-F. Chen. Angew. Chem. Int. Ed., 63 (18), e202401835 (2024). DOI: 10.1002/anie.202401835
  84. X. Huang, J. Liu, Y. Xu, G. Chen, M. Huang, M. Yu, X. Lv, X. Yin, Y. Zou, J. Miao, X. Cao, C. Yang. National Science Review, 11 (6), nwae115 (2024). DOI: 10.1093/nsr/nwae115
  85. H. Miranda-Salinas, J. Wang, A. Danos, T. Matulaitis, K. Stavrou, A.P. Monkman, E. Zysman-Colman. J. Mater. Chem. C, 12 (6), 1996 (2024). DOI: 10.1039/D3TC04394K
  86. J. Ochi, Y. Yamasaki, K. Tanaka, Y. Kondo, K. Isayama, S. Oda, M. Kondo, T. Hatakeyama. Nat. Commun., 15 (1), 2361 (2024). DOI: 10.1038/s41467-024-46619-8
  87. Y. Qi, Z. Zhang, W. Sun, S. Wu, J. Liu, Z. Lin, P. Jiang, H. Yu, L. Zhou, G. Lu. J. Mater. Chem. C, 12 (17), 6319 (2024). DOI: 10.1039/D4TC00429A
  88. R.W. Weerasinghe, J.M. dos Santos, Y. Chitose, T. Matulaitis, S.L. Warriner, D. Barman, C. Y. Chan, Y. Tsuchiya, E. Zysman-Colman, C. Adachi. Phys. Chem. Chem. Phys., 26 (32), 21337 (2024). DOI: 10.1039/D4CP02664K
  89. J. Xu, M. Wang, J. Chen, Z. Wu, T. Guo, B.Z. Tang, Z. Zhao. Adv. Opt. Mater., 12 (23), 2400739 (2024). DOI: 10.1002/adom.202400739
  90. L. Yuan, J.-W. Xu, Z.-P. Yan, Y.-F. Yang, D. Mao, J.-J. Hu, H.-X. Ni, C.-H. Li, J.-L. Zuo, Y.-X. Zheng. Angew. Chem. Int. Ed., 63 (32), e202407277 (2024). DOI: 10.1002/anie.202407277
  91. T.-Y. Zhang, Y.-C. Cheng, H. Wang, F. Huang, X. Xiong, X.-C. Fan, J. Yu, K. Wang, X. H. Zhang. J. Mater. Chem. C, 12 (15), 5386 (2024). DOI: 10.1039/D3TC04771G
  92. Y. Zou, M. Yu, Y. Xu, Z. Xiao, X. Song, Y. Hu, Z. Xu, C. Zhong, J. He, X. Cao, K. Li, J. Miao, C. Yang. Chem, 10 (5), 1485 (2024). DOI: 10.1016/j.chempr.2024.01.018
  93. J. Park, K.J. Kim, J. Lim, T. Kim, J.Y. Lee. Adv. Mater., 34 (21), 2108581 (2022). DOI: 10.1002/adma.202108581
  94. S. Oda, B. Kawakami, R. Kawasumi, R. Okita, T. Hatakeyama. Org. Lett., 21 (23), 9311 (2019). DOI: 10.1021/acs.orglett.9b03342
  95. X. Liang, Z.-P. Yan, H.-B. Han, Z.-G. Wu, Y.-X. Zheng, H. Meng, J.-L. Zuo, W. Huang. Angew. Chem. Int. Ed., 57 (35), 11316 (2018). DOI: 10.1002/anie.201806323
  96. K. Matsui, S. Oda, K. Yoshiura, K. Nakajima, N. Yasuda, T. Hatakeyama. J. Am. Chem. Soc., 140 (4), 1195 (2018). DOI: 10.1021/jacs.7b10578
  97. F. Huang, K. Wang, Y.-Z. Shi, X.-C. Fan, X. Zhang, J. Yu, C.-S. Lee, X.-H. Zhang. ACS Appl. Mater. Interfaces, 13 (30), 36089 (2021). DOI: 10.1021/acsami.1c09743
  98. Y. Zhang, D. Zhang, T. Huang, A.J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, L. Duan. Angew. Chem. Int. Ed., 60 (37), 20498 (2021). DOI: 10.1002/anie.202107848
  99. P.K. Samanta, D. Kim, V. Coropceanu, J.-L. Bredas. J. Am. Chem. Soc., 139 (11), 4042 (2017). DOI: 10.1021/jacs.6b12124
  100. X.-K. Chen, D. Kim, J.-L. Bredas. Acc. Chem. Res., 51 (9), 2215 (2018). DOI: 10.1021/acs.accounts.8b00174
  101. T.J. Penfold, E. Gindensperger, C. Daniel, C.M. Marian. Chem. Rev., 118 (15), 6975 (2018). DOI: 10.1021/acs.chemrev.7b00617
  102. M. Hagai, N. Inai, T. Yasuda, K.J. Fujimoto, T. Yanai. Sci. Adv., 10 (5), eadk3219 (2024). DOI: 10.1126/sciadv.adk3219
  103. D.S. McClure. J. Chem. Phys., 20 (4), 682 (1952). DOI: 10.1063/1.1700516
  104. С. Мак-Глинн, Т. Адзуми, М. Киносита, Молекулярная спектроскопия триплетного состояния (Мир, Москва, 1972). [S.P. McGlynn, T. Azumi, M. Kinoshita. Molecular Spectroscopy of the Triplet State (Prentice-Hall, 1969).]
  105. M.A. El'Sayed. J. Chem. Phys., 38 (12), 2834 (1963). DOI: 10.1063/1.1733610
  106. D.S. McClure. J. Chem. Phys., 17 (7), 665 (1949). DOI: 10.1063/1.1747359
  107. В.М. Комаров, В.Г. Плотников, Л.Г. Белоусова. Опт. и спектр., 29 (5), 1006 (1970). [V.M. Komarov, V.G. Plotnikov, L.V. Belousova. Opt. Spectrosc., 29 (5), 533 (1970).]
  108. В.Г. Плотников. Усп. хим., 49 (2), 327 (1980). DOI: 10.1070/RC1980v049n02ABEH002452 [V.G. Plotnikov. Russ. Chem. Rev., 49 (2), 172 (1980). DOI: 10.1070/RC1980v049n02ABEH002452]
  109. Y. Tsuchiya, S. Diesing, F. Bencheikh, Y. Wada, P.L. dos Santos, H. Kaji, E. Zysman-Colman, I.D.W. Samuel, C. Adachi. J. Phys. Chem. A, 125 (36), 8074 (2021). DOI: 10.1021/acs.jpca.1c04056
  110. J. Liu, Y. Zhu, T. Tsuboi, C. Deng, W. Lou, D. Wang, T. Liu, Q. Zhang. Nat. Commun., 13 (1), 4876 (2022). DOI: 10.1038/s41467-022-32607-3
  111. C. Baleizao, M.N. Berberan-Santos. J. Chem. Phys., 126 (20), 204510 (2007). DOI: 10.1063/1.2734974
  112. K. Masui, H. Nakanotani, C. Adachi. Org. Electron., 14 (11), 2721 (2013). DOI: 10.1016/j.orgel.2013.07.010
  113. T. Froitzheim, S. Grimme, J.-M. Mewes. J. Chem. Theory Comput., 18 (12), 7702 (2022). DOI: 10.1021/acs.jctc.2c00905
  114. M. Kondo. Chem. Phys. Lett., 804, 139895 (2022). DOI: 10.1016/j.cplett.2022.139895
  115. J. Liang, X. Feng, D. Hait, M. Head-Gordon. J. Chem. Theory Comput., 18 (6), 3460 (2022). DOI: 10.1021/acs.jctc.2c00160
  116. A. Pershin, D. Hall, V. Lemaur, J.-C. Sancho-Garcia, L. Muccioli, E. Zysman-Colman, D. Beljonne, Y. Olivier. Nat. Commun., 10 (1), 597 (2019). DOI: 10.1038/s41467-019-08495-5
  117. J. Bian, S. Chen, L. Qiu, N. Zhang, J. Zhang, C. Duan, C. Han, H. Xu. Research, 2022, 9838120 (2022). DOI: 10.34133/2022/9838120
  118. J. Bian, S. Chen, L. Qiu, R. Tian, Y. Man, Y. Wang, S. Chen, J. Zhang, C. Duan, C. Han, H. Xu. Adv. Mater., 34 (17), 2110547 (2022). DOI: 10.1002/adma.202110547
  119. H. Chen, T. Fan, G. Zhao, D. Zhang, G. Li, W. Jiang, L. Duan, Y. Zhang. Angew. Chem. Int. Ed., 62 (20), e202300934 (2023). DOI: 10.1002/anie.202300934
  120. Y. Sano, T. Shintani, M. Hayakawa, S. Oda, M. Kondo, T. Matsushita, T. Hatakeyama. J. Am. Chem. Soc., 145 (21), 11504 (2023). DOI: 10.1021/jacs.3c02873
  121. Y. Xu, Q. Wang, X. Cai, C. Li, Y. Wang. Adv. Mater., 33 (21), 2100652 (2021). DOI: 10.1002/adma.202100652
  122. Y. Yang, N. Li, J. Miao, X. Cao, A. Ying, K. Pan, X. Lv, F. Ni, Z. Huang, S. Gong, C. Yang. Angew. Chem. Int. Ed., 61 (30), e202202227 (2022). DOI: 10.1002/anie.202202227
  123. J. Jiang, J.Y. Lee. Mater. Today, 68, 204 (2023). DOI: 10.1016/j.mattod.2023.06.016
  124. B. van der Zee, Y. Li, G.-J.A.H. Wetzelaer, P.W.M. Blom. Phys. Rev. Appl., 18 (6), 064002 (2022). DOI: 10.1103/PhysRevApplied.18.064002
  125. W. Zhang, Z. Wu, S. Liang, B. Jiao, X. Zhang, D. Wang, X. Hou, Z. Chen, Q. Gong. J. Phys. D: Appl. Phys., 44 (15), 155103 (2011). DOI: 10.1088/0022-3727/44/15/155103
  126. K.R. Naveen, H. Lee, R. Braveenth, D. Karthik, K.J. Yang, S.J. Hwang, J.H. Kwon. Adv. Funct. Mater., 32 (12), 2110356 (2022). DOI: 10.1002/adfm.202110356
  127. D.H. Ahn, J.H. Maeng, H. Lee, H. Yoo, R. Lampande, J.Y. Lee, J.H. Kwon. Adv. Opt. Mater., 8 (11), 2000102 (2020). DOI: 10.1002/adom.202000102

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.