Вышедшие номера
Оптическая спектроскопия монокристаллов неорганического cвинцово-галогенидного перовскита CsPbBr3
Министерство науки и высшего образования РФ , Госзадание Института спектроскопии РАН, FFUU-2024-0004
Министерство науки и высшего образования РФ , Госзадание Института спектроскопии РАН, FFUU-2022-0003
Министерство науки и высшего образования РФ , Госзадание ИФП СО РАН, FWGW-2022-0006
Аникеева В.Е. 1,2, Болдырев Н.Ю. 1, Семенова О.И. , Болдырев К.Н. 1, Попова М.Н. 1
1Институт спектроскопии РАН, Троицк, Москва, Россия
2Национальный исследовательский университет "Высшая школа экономики", Москва, Россия
Email: vanikeeva@hse.ru, nyubold@gmail.com, oisem@isp.nsc.ru, kn.boldyrev@gmail.com, popova@isan.troitsk.ru
Поступила в редакцию: 28 июня 2024 г.
В окончательной редакции: 28 июня 2024 г.
Принята к печати: 29 июля 2024 г.
Выставление онлайн: 25 октября 2024 г.

Представлены результаты исследования температурных зависимостей спектров люминесценции (3.6-120 K) при возбуждении светом с длиной волны 405 nm и бесконтактно измеренной фотопроводимости (3.6-300 K) монокристалла CsPbBr3. В низкотемпературном спектре фотолюминесценции (ФЛ), кроме линии автолокализованного экситона (2.318 eV при 10 K), наблюдаются богатая структура, возможно, относящаяся к экситонно-примесным комплексам, и широкая полоса с максимумом около 2.24 eV, которая может быть ФЛ примесных или дефектных центров. В спектре фотопроводимости (ФП) присутствуют два узких пика на частотах интенсивных экситонных линий ФЛ и широкий континуум, соответствующий зона-зонному поглощению. В то время как ФЛ тушится с повышением температуры, ФП растёт. На основании анализа температурных зависимостей интегральных интенсивностей экситонного пика в ФЛ и в ФП найдены энергии активации (12± 3 и 77± 10 meV) процессов, приводящих к распаду автолокализованного экситона, сопровождающемуся тушением ФЛ и появлением носителей заряда. Получена оценка энергии связи экситона в монокристалле CsPbBr3: E_b = 65± 13 meV. Ключевые слова: перовскиты, монокристалл CsPbBr3, оптическая спектроскопия, экситоны, фотолюминесценция, фотопроводимость.
  1. S. Parola, B. Julian-Lopez, L.D. Carlos, C. Sanchez. Adv. Funct. Mater., 26, 6506-6544 (2016). DOI: 10.1002/adfm.201602730
  2. A.K. Jena, A. Kulkarni, T. Miyasaka. Chem. Rev., 119 (5), 3036-3103 (2019). DOI: 10.1021/acs.chemrev.8b00539
  3. S. Ullah, J. Wang, P. Yang, L. Liu, S.-E. Yang, T. Xia, H. Guo, Y. Chen. Mater. Adv., 2, 646-683 (2021). DOI: 10.1039/d0ma00866d
  4. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng. Adv. Funct. Mater., 26, 2435-2445 (2016). DOI: 10.1002/adfm.201600109
  5. R. Wang, Y. Zhang, F.-X. Yu, Y. Dong, Y.-L. Jia, X.-J. Ma, Q. Xu, Y. Deng, Z.-H. Xiong, Ch.-H. Gao. J. Lumin., 219, 116915 (2020). DOI: 10.1016/j.jlumin.2019.116915
  6. E. Oksenberg, E. Sanders, R. Popovitz-Biro, L. Houben, E. Joselevich. Nano Lett., 18 (1), 424-433 (2018). DOI: 10.1021/acs.nanolett.7b04310
  7. Z. Liu, Q. Shang, C. Li, L. Zhao, Y. Gao, Q. Li, J. Chen, S. Zhang, X. Liu, Y. Fu, Q. Zhang. Appl. Phys. Lett., 114, 101902 (2019). DOI: 10.1063/1.5082759
  8. К.А. Дроздов, И.В. Крылов, А.С. Чижов, М.Н. Румянцева, Л.И. Pябова, Д.Р. Хохлов. ФТП, 7, 763 (2018) DOI: 10.21883/FTP.2018.07.46049.8788
  9. O. Antonyak, R. Gamernyk, T. Demkiv, T. Malyi, Ya. Chornodolskyy. J. Lumin., 263, 120030 (2023). DOI: 10.1016/j.jlumin.2023.120030
  10. B.P. Reddy, B.J. Babu, S. Sreedhar, C.K. Basha, Y. Suh, M.Ch. Sekhar, S.-H. Park. Heliyon, 10 (2), E24497 (2024) DOI: 10.1016/j.heliyon.2024.e24497
  11. B. Abasht, S.Kh. Asl, H. Aghajani, A. Asgari. Ceramics International, 50 (12), 22050-22059 (2024). DOI: 10.1016/j.ceramint.2024.03.319
  12. L. Su. J. Mat. Sci. Tech., 187, 113-122 (2024). DOI: 10.1016/j.jmst.2024.01.003
  13. V.M. Agranovich, D.M. Basko, G.C. La Rocca, F. Bassani. J. Phys.: Condens. Matter., 10, 9369-9400 (1998). DOI: 10.1088/0953-8984/10/42/005
  14. N. Ashurov, B.L. Oksengendler, S. Maksimov, S. Rashiodva, A.R. Ishteev, D.S. Saranin, I.N. Burmistrov, D.V. Kuznetsov, A.A. Zakhisov. Modern Electronic Mater., 3 (1), 1-25 (2017). DOI: 10.1016/j.moem.2017.05.001
  15. J. Peng, C.Q. Xia, Y.Xu, R. Li, L. Cui, J.K. Clegg, L.M. Herz, M.B. Johnston, Q. Lin. Nat. Commun., 12, 1531 (2021). DOI: 10.1038/s41467-021-21805-0
  16. V.E. Anikeeva, K.N. Boldyrev, O.I. Semenova, T.S. Sukhikh, M.N. Popova. Opt. Mat.: X, 20, 100259 (2023). DOI: 10.1016/j.omx.2023.100259
  17. S. Liu, A.R. DeFilippo, M. Balasubramanian, Z. Liu, S.G. Wang, Y.-S. Chen, S. Chariton, V. Prakapenka, X. Luo, L. Zhao, J.S. Martin, Y. Lin, Y. Yan, S.K. Ghose, T.A. Tyson. Adv. Sci., 8 (18), 2003046 (2021). DOI: 10.1002/advs.202003046
  18. V.V. Belykh, D.R. Yakovlev, M.M. Glazov, P.S. Grigoryev, M. Hussain, J. Rautert, D.N. Dirin, M.V. Kovalenko, M. Bayer. Nat. Commun., 10, 673 (2019). DOI: 10.1038/s41467-019-08625-z
  19. M.P. Mamaeva, M. Androulidaki, V. Spanou, N.M. Kireev, N.T. Pelekanos, Y.V. Kapitonov, C. Stoumpos. J. Phys. Chem. C, 127 (46), 22784-22789 (2023) DOI: 10.1021/acs.jpcc.3c05829
  20. V.I. Yudin, M.S. Lozhkin, A.V. Shurukhina, A.V. Emeline, Y.V. Kapitonov. J. Phys. Chem. C, 123 (34), 21130-21134 (2019). DOI: 10.1021/acs.jpcc.9b04267
  21. Z. Zhao, M. Zhong, W. Zhou, Y. Peng, Y. Yin, D. Tang, B. Zou. J. Phys. Chem. C, 123 (41), 25349-25358 (2019). DOI: 10.1021/acs.jpcc.9b06643
  22. J.A. Steele, P. Puech, B. Monserrat, B. Wu, R.X. Yang, T. Kirchartz, H. Yuan, G. Fleury, D. Giovanni, E. Fron, M. Keshavarz, E. Debroye, G. Zhou, T.Ch. Sum, A. Walsh, J. Hofkens, M.B.J. Roeffaers. ACS Energy Lett., 4 (9), 2205-2212 (2019). DOI: 10.1021/acsenergylett.9b01427
  23. M. Isarov, L.Z. Tan, M.I. Bodnarchuk, M.V. Kovalenko, A.M. Rappe, E. Lifshitz. Nano Lett., 17 (8), 5020-5026 (2017). DOI: 10.1021/acs.nanolett.7b02248
  24. L.-I. Bulyk, T. Demkiv, O. Antonyak, Y.M. Chornodolskyy, R. Gamernyk, A. Suchocki, A. Voloshinovskii. Dalton Trans., 52, 16712-16719 (2023). DOI: 10.1039/D3DT02647G
  25. B. Wu, H. Yuan, Q. Xu, J.A. Steele, D. Giovanni, P. Puech, J. Fu, Y.F. Ng, N.F. Jamaludin, A. Solanki, S. Mhaisalkar, N. Mathews, M.B.J. Roeffaers, M. Gratzel, J. Hofkens, T.Ch. Sum. Nat. Commun., 10, 484 (2019). DOI: 10.1038/s41467-019-08326-7
  26. M. Dendebera, Ya. Chornodolskyy, R. Gamernyk, O. Antonyak, I. Pashuk, S. Myagkota, I. Gnilitskyi, V. Pankratov, V. Vistovskyy, V. Mykhaylyk, M. Grinberg, A. Voloshinovskii. J. Lumin., 225, 117346 (2020). DOI: 10.1016/j.jlumin.2020.117346
  27. K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, T. Jiang. Opt. Lett., 41 (16), 3821-3824 (2016). DOI: 10.1364/OL.41.003821
  28. G. Mannino, I. Deretzis, E. Smecca, A. La Magna, A. Alberti, D. Ceratti, D. Cahen. J. Phys. Chem. Lett., 11 (7), 2490-2496 (2020). DOI: 10.1021/acs.jpclett.0c00295
  29. Y. Yuan, M. Chen, S. Yang, X. Shen, Y. Liu, D. Cao. J. Lumin., 226, 117471 (2020). DOI: 10.1016/j.jlumin.2020.117471
  30. D. Bimberg, M. Sondergeld, E. Grobe. Phys. Rev. B, 4, 3451-3455 (1971). DOI: 10.1103/PhysRevB.4.3451
  31. A. Dey, P. Rathod, D. Kabra. Adv. Opt. Mater., 6, 1800109 (2018). DOI: 10.1002/adom.201800109
  32. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko. Nano Lett., 15 (6), 3692-3696 (2015). DOI: 10.1021/nl5048779
  33. C. Wolf, T.-W. Lee. Materials Today Energy, 7, 199-207 (2018). DOI: 10.1016/j.mtener.2017.09.010
  34. J. Xu, S. Yu, X. Shang, X. Chen. Adv. Photonics Res., 4, 2200193 (2023). DOI: 10.1002/adpr.202200193
  35. S.G. Motti, F. Krieg, A.J. Ramadan, J.B. Patel, H.J. Snaith, M.V. Kovalenko, M.B. Johnston, L.M. Herz. Adv. Funct. Mater., 30, 1909904 (2020). DOI: 10.1002/adfm.201909904
  36. X. Shen, M. Chen, L. Shi, F. Chen, Y. Liu, D. Cao, C. Xu. Opt. Commun., 453, 124354 (2019). DOI: 10.1016/j.optcom.2019.124354
  37. B.R.C. Vale, E. Socie, A. Burgos-Caminal, J. Bettini, M.A. Schiavon, J.-E. Moser. J. Phys. Chem. Lett., 11 (2), 387-394 (2020). DOI: 10.1021/acs.jpclett.9b03282
  38. [Электронный ресурс]. URL:https://ckp-rf.ru/catalog/usu/508571/

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.