Вышедшие номера
Двухфотонное возбуждение оксида азота при фотофрагментации нитробензола
Министерство науки и высшего образования Российской Федерации, Государственное задание Министерства науки и высшего образования Российской Федерации, FWRM-2021-0014
Министерство науки и высшего образования Российской Федерации, Программа развития Томского государственного университета, Приоритет-2030
Пучикин А.В. 1, Панченко Ю.Н. 1,2, Андреев М.В. 2, Коновалов И.Н. 1, Прокопьев В.Е. 2
1Институт сильноточной электроники СО РАН, Томск, Россия
2Национальный исследовательский Томский государственный университет, Томск, Россия
Email: apuchikin@mail.ru, yu.n.panchenko@mail.ru, andreevmv_86@mail.ru, ivan@lgl.hcei.tsc.ru, prokop@ogl.hcei.tsc.ru
Поступила в редакцию: 11 декабря 2023 г.
В окончательной редакции: 9 января 2024 г.
Принята к печати: 16 января 2024 г.
Выставление онлайн: 2 апреля 2024 г.

Исследованы временные и спектральные характеристики флуоресценции оксида азота NO A2Sigma, полученной при двухчастотном лазерном взаимодействии с нитробензолом C6H5NO2. Определен физический механизм появления флуоресценции c электронного уровня NO A2Sigma, v'(0), которая возникает при двухфотонном возбуждении электронного перехода NO A2Sigma-X2, v'v'' (0,1) лазерным излучением на длине волны 472 nm с фемтосекундной длительностью. При этом колебательно-возбужденные молекулы NO X2, v''(1) возникают как фотофрагменты нитробензола после взаимодействия с лазерным излучением KrF-лазера (248.3 nm) наносекундой длительности. Отмечается, что для данной экспериментальной установки спектр флуоресценции NO A2Sigma регистрировался при интенсивности фемтосекундного импульса ~300 GW/сm2. Ключевые слова: фотофрагментация, двухфотонное поглощение, нитросоединение, флуоресценция.
  1. V.E. Privalov, V.G. Shemanin. Opt. Spectrosc., 130 (3), 331 (2022). DOI: 10.61011/OS.2024.01.57542.6-24
  2. L.M. Narlagiri, M.S.S. Bharati, R. Beeram, D. Banerjee, V. Rao Soma. Trends Anal. Chem., 153, 116645 (2022). DOI:10.1016/j.trac.2022.116645
  3. D.D. Tuschel, A.V. Mikhonin, B.E. Lemoff, S.A. Asher. Appl. Spectrosc., 64 (4), 425-32 (2010). DOI: 10.1366/000370210791114194
  4. C.S. Cockell, J. Knowland. Biol. Rev. Camb. Philos. Soc., 74 (3), 311-45 (1999). DOI: 10.1017/s0006323199005356
  5. M.O. Rodgers, K. Asai, D.D. Davis. Appl. Opt., 19 (21), 3597 (1980). DOI: 10.1364/AO.19.003597
  6. T. Arusi-Parpar, D. Heflinger, R. Lavi. Appl. Opt., 40 (36), 6677 (2001). DOI: 10.1364/AO.40.006677
  7. C. M. Wynn, S. Palmacci, R.R. Kunz, K. Clow, M. Rothschild. Appl. Opt., 47 (31), 5767 (2008). DOI: 10.1364/AO.47.005767
  8. D. Wu, J.P. Singh, F.Y. Yueh, D.L. Monts. Appl. Opt., 35 (21), 3998 (1996). DOI: 10.1364/AO.35.003998
  9. S.M. Bobrovnikov, E.V. Gorlov, V.I. Zharkov, Yu.N. Panchenko, A.V. Puchikin. Appl. Opt., 57(31), 9381 (2018). DOI: 10.1364/AO.57.009381
  10. S.M. Bobrovnikov, E.V. Gorlov, V.I. Zharkov, Yu.N. Panchenko, A. Puchikin. Appl. Opt., 58(27), 7497 (2019). DOI: 10.1364/AO.58.007497
  11. M.-F. Lin, Y.T. Lee, C.-K. Ni, S. Xu, M.C. Lin. J. Chem. Phys., 126(6), 064310 (2007). DOI: 10.1063/1.2435351
  12. A.V. Puchikin, Yu.N. Panchenko, S.A. Yampolskaya, M.V. Andreev, V.E. Prokopiev. J. Lumin., 263, 120073 (2023). DOI: 10.1016/j.jlumin.2023.120073
  13. J. Viallon, S. Lee, P. Moussay, K. Tworek, M. Petersen, R.I. Wielgosz. Atm. Meas. Tech., 8 (3), 1245 (2015). DOI: 10.5194/amt-8-1245-2015
  14. K.A. Rahman, K.S. Patel, M.N. Slipchenko, T.R. Meyer, Zh. Zhang, Y. Wu, J.R. Gord, S. Roy. Appl. Opt., 57 (20), 5666 (2018). DOI: 10.1364/AO.57.005666
  15. J.B. Schmidt, S. Roy, W.D. Kulatilaka, I. Shkurenkov, I.V. Adamovich, W.R. Lempert, J.R. Gord. J. Phys. D, 50 (1), 015204 (2017). DOI: 10.1088/1361-6463/50/1/015204
  16. M. Hay, P. Parajuli, W.D. Kulatilaka. Proc. Combust. Inst., 39(1), 1435 (2023). DOI: 10.1016/j.proci.2022.08.090
  17. A.V. Puchikin, Yu.N. Panchenko, S.A. Yampolskaya, M.V. Andreev, V.E. Prokopiev. J. Lumin., 268, 120412 (2024). DOI: 10.1016/j.jlumin.2023.120412
  18. Y.N. Panchenko, A.V. Puchikin, S.A. Yampolskaya, S.M. Bobrovnikov, E.V. Gorlov, V. I. Zharkov. IEEE J. Quant. Electron., 57 (2), 1 (2021). DOI: 10.1109/JQE.2021.3049579
  19. Yu.I. Bychkov, A.G. Yastremskii, S.A. Yampolskaya, V.F. Losev, V. Dudarev, Yu.N. Panchenko, A.V. Puchikin. Russ. Phys. J., 57 (7), 929 (2014). DOI: 10.1007/s11182-014-0326-3
  20. S.A. Yampolskaya, A.G. Yastremskii, Yu.N. Panchenko, A.V. Puchikin, S.M. Bobrovnikov. IEEE J. Quant. Electron., 56 (2), 1500209 (2020). DOI: 10.1109/JQE.2020.2976532
  21. J. Luque, D.R. Crosley. LIFBASE: Database and Spectral Simulation Program (Version 1.5), SRI International Report MP 99-009 (1999). https://www.sri.com/engage/products-solutions/lifbase
  22. W.G. Bessler, C. Schulz, V. Sick, J.W. Daily. Proc. Third Joint Meeting US Sec. Combust. Inst., 105, 1 (2003). https://api.semanticscholar.org/CorpusID:92818989
  23. R.C. Reid, J.M. Prausnitz, T.K. Sherwood. The Properties of Gases \& Liquids (Chem. Eng. Series, McGraw-Hill, NY., 1977)
  24. L. Fr sig, O.J. Nielsen, M. Bilde, T.J. Wallington, J.J. Orlando, G.S. Tyndall. J. Phys. Chem. A, 104 (48), 11328 (2000). DOI: 10.1021/jp002696o
  25. C. Tanjaroon, C.J. Lue, S.W. Reeve, S.D. Allen, J.B. Johnson. Chem. Phys. Lett., 641, 33 (2015). DOI: 10.1016/j.cplett.2015.10.051
  26. Y.-M. Li, J.-L. Sun, H.-M. Yin, K.-L. Han, G.-Z. He. J. Chem. Phys., 118 (14), 6244 (2003). DOI: 10.1063/1.1557932
  27. D.B. Galloway, J.A. Bartz, L.G. Huey, F.F. Crim. J. Chem. Phys., 98(3), 2107 (1993). DOI: 10.1063/1.464188
  28. K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O.C. Fleischmann, A. Vogel, M. Hartmann, H. Bovensmann, J. Frerick, J.P. Burrows. J. Photochem. Photobiol. A, 157(2-3), 167 (2003). DOI: 10.1016/S1010-6030(03)00062-5
  29. R.M. Measures. Laser remote sensing: fundamentals and applications (Krieger, Melbourne, 1992)
  30. D.B. Galloway, T. Glenewinkel-Meyer, J.A. Bartz, L.G. Huey, F.F. Crim. J. Chem. Phys., 100 (3), 1946 (1994). DOI: 10.1063/1.466547
  31. L.A. Melton, W. Klemperer. Planet. Space Sci., 20(2), 157 (1972). DOI: 10.1016/0032-0633(72)90097-9
  32. A.B. Callear, M.J. Pilling. Trans. Faraday Soc., 66, 1618 (1970). DOI: 10.1039/TF9706601618

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.