Вышедшие номера
Моделирование спектров люминесценции в сферических микрорезонаторах с излучающей оболочкой
Russian state budget, state assignment, 0040-2019-0012
Дукин А.А. 1, Голубев В.Г. 1
1Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
Email: dookin@gvg.ioffe.ru, golubev@gvg.ioffe.ru
Поступила в редакцию: 9 мая 2021 г.
В окончательной редакции: 16 июня 2021 г.
Принята к печати: 23 июня 2021 г.
Выставление онлайн: 26 июля 2021 г.

Проведено моделирование спектров люминесценции микрорезонаторной структуры, состоящей из сферического ядра малого диаметра (3.5-6 μm), покрытого люминесцентной оболочкой с показателем преломления меньше, чем у ядра. Спектры люминесценции оболочки, радиальное распределение поля мод шепчущей галереи (МШГ) и параметры мод (длина волны, ширина, добротность) рассчитаны с использованием разложения поля электромагнитной волны в базисе векторных сферических гармоник и метода матриц переноса сферических волн. Изучена зависимость спектров люминесценции и параметров МШГ от геометрических и оптических параметров структуры - толщины оболочки, показателя преломления оболочки и диаметра ядра. Ключевые слова: сферический микрорезонатор, люминесцентная оболочка, моды шепчущей галереи, моделирование спектров люминесценции.
  1. Ораевский А.Н. // Квант. электрон. 2002. Т. 32. N 5. С. 377; Oraevsky A.N. // Quantum Electron. 2002. V. 32. N 5. P. 377. doi 10.1070/QE2002v032n05ABEH002205
  2. Городецкий М.Л. Оптические микрорезонаторы с гигантской добротностью. М.: ФИЗМАТЛИТ, 2011. 416 с
  3. Foreman M.R., Swaim J.D., Vollmer F. // Adv. Opt. Photon. 2015. V. 7. N 2. P. 168. doi 10.1364/AOP.7.000168
  4. Francois A., Zhi Y., Meldrum A. // Photonic Materials for Sensing, Biosensing and Display Devices. Springer International Publishing, 2016. V. 229. P. 237. doi 10.1007/978-3-319-24990-2
  5. Ward J., Benson O. // Las. Photon. Rev. 2011. V. 5. N 4. P. 553. doi 10.1002/lpor.201000025
  6. Chiasera A., Dumeige Y., Feron P., Ferrari M., Jestin Y., Nunzi Conti G., Pelli S., Soria S., Righini G.C. // Las. Photon. Rev. 2010. V. 4. N 3. P. 457 doi 10.1002/lpor.200910016
  7. Rakovich Y.P., Donegan J.F. // Las. Photon. Rev. 2010. V. 4. N 2. P. 179. doi 10.1002/lpor.200910001
  8. Righini G.C., Soria S. // Sensors. 2016. V. 16. N 6. P. 905. doi 10.3390/s16060905
  9. Cai L., Pan J., Zhao Y., Wang J., Xiao S. // Phys. Stat. Sol. A. 2020. V. 217. N 6. P. 1900825. doi 10.1002/pssa.201900825
  10. Venkatakrishnarao D., Mamonov E.A., Murzina T.V., Chandrasekar R. // Adv. Opt. Mater. 2018. V. 6. N 18. P. 1800343. doi 10.1002/adom.201800343
  11. Gorodetskii M.L., Ilchenko V.S., Savchenkov A.A. // Opt. Lett. 1996. V. 21. N 7. P. 453. doi 10.1364/OL.21.000453
  12. Reynolds T., Riesen N., Meldrum A., Fan X., Hall J.M.M., Monro T.M., Francois A. // Las. Photon. Rev. 2017. V. 11. N 2. P. 1600265. doi 10.1002/lpor.201600265
  13. Vollmer F., Arnold S. // Nat. Methods. 2008. V. 5. N 7. P. 591. doi 10.1038/NMETH.1221
  14. Jiang X., Qavi A.J., Huang S.H., Yang L. // Matter. 2020. V. 3. N 2. P. 371. doi 10.1016/J.MATT.2020.07.008
  15. Zhi Y., Yu X.-C., Gong Q., Yang L., Xiao Y.-F. // Adv. Mater. 2017. V. 29. N 12. P. 1604920. doi 10.1002/adma.201604920
  16. Toropov N., Cabello G., Serrano M.P., Gutha R.R., Rafti M., Vollmer F. // Light Sci. Appl. 2021. V. 10. P. 42. doi 10.1038/s41377-021-00471-3
  17. Toropov N., Vollmer F. // Light Sci. Appl. 2021. V. 10. P. 77. doi 10.1038/s41377-021-00517-6
  18. Weller A., Liu F.C., Dahint R., Himmelhaus M. // Appl. Phys. B. 2008. V. 90. N 3-4. P. 561. doi 10.1007/s00340-007-2893-2
  19. Himmelhaus M., Krishnamoorthy S., Francois A. // Sensors. 2010. V. 10. N 6. P. 6257. doi 10.3390/s100606257
  20. Monte A.F.G., Rabelo D., Morais P.C. // J. All. Comp. 2010. V. 495. N 2. P. 436. doi 10.1016/j.jallcom.2009.11.040
  21. Dantham V.R., Bisht P.B. // J. Opt. Soc. Am. B. 2009. V. 26. N 2. P. 290. doi 10.1364/JOSAB.26.000290
  22. Mamonov E.A., Maydykovskiy A.I., Mitetelo N.V., Venkatakrishnarao D., Chandrasekar R., Murzina T.V. // Laser Phys. Lett. 2018. V. 15. N 3. P. 035401. doi 10.1088/1612-202x/aa9b23
  23. Venkatakrishnarao D., Sahoo C., Vattikunta R., Annadhasan M., Naraharisetty S.R.G., Chandrasekar R. // Adv. Opt. Mater. 2017. V. 5. N 22. P. 1700695. doi 10.1002/adom.201700695
  24. Moller B., Artemyev M.V., Woggon U., Wannemacher R. // Appl. Phys. Lett. 2002. V. 80. N 18. P. 3253. doi 10.1063/1.1475364
  25. Gotzinger S., Menezes L. de S., Benson O., Talapin D.V., Gaponik N., Weller H., Rogach A.L., Sandoghdar V. // J. Opt. B: Quantum Semiclass. Opt. 2004. V. 6. N 2. P. 154. doi 10.1088/1464-4266/6/2/005
  26. Fan X., Palinginis P., Lacey S., Wang H., Lonergan M.C. // Opt. Lett. 2000. V. 25. N 21. P. 1600. doi 10.1364/OL.25.001600
  27. Finlayson C.E., Sazio P.J.A., Sanchez-Martin R., Bradley M., Kelf T.A., Baumberg J.J. // Semicond. Sci. Technol. 2006. V. 21. N 3. P. L21. doi 10.1088/0268-1242/21/3/L01
  28. Melnikau D., Savateeva D., Chuvilin A., Hillenbrand R., Rakovich Y.P. // Opt. Expr. 2011. V. 19. N 22. P. 22280. doi 10.1364/OE.19.022280
  29. Mi Y., Zhang Z., Zhao L., Zhang S., Chen J., Ji Q., Shi J., Zhou X., Wang R., Shi J., Du W., Wu Z., Qiu X., Zhang Q., Zhang Y., Liu X. // Small. 2017. V. 13. N 42. P. 1701694. doi 10.1002/smll.201701694
  30. Schietinger S., Schroder T., Benson O. // Nano Lett. 2008. V. 8. N 11. P. 3911. doi 10.1021/nl8023627
  31. Rakovich Y.P., Yang L., McCabe E.M., Donegan J.F., Perova T., Moore A., Gaponik N., Rogach A. // Semicond. Sci. Technol. 2003. V. 18. N 11. P. 914. doi 10.1088/0268-1242/18/11/302
  32. Еуров Д.А., Стовпяга Е.Ю., Курдюков Д.А., Дукин А.А., Смирнов А.Н., Голубев В.Г. // ФТТ. 2020. Т. 62. N 10. С. 1690. doi 10.21883/FTT.2020.10.49922.102; Eurov D.A., Stovpiaga E.Yu., Kurdyukov D.A., Dukin A.A., Smirnov A.N., Golubev V.G. // Phys. Solid State. 2020. V. 62. N 10. P. 1898. doi 10.1134/S1063783420100054
  33. Грудинкин С.А., Донцов А.А., Феоктистов Н.А., Баранов М.А., Богданов К.В., Аверкиев Н.С., Голубев В.Г. // ФТП. 2015. Т. 49. N 10. С. 1415; Grudinkin S.A., Dontsov A.A., Feoktistov N.A., Baranov M.A., Bogdanov K.V., Averkiev N.S., Golubev V.G. // Semiconductors. 2015. V. 49. N 10. P. 1369. doi 10.1134/S1063782615100085
  34. Teraoka I., Arnold S. // J. Opt. Soc. Am. B. 2007. V. 24. N 3. P. 653. doi 10.1364/JOSAB.24.000653
  35. Zijlstra P., van der Molen K.L., Mosk A.P. // Appl. Phys. Lett. 2007. V. 90. N 16. P. 161101. doi 10.1063/1.2722695
  36. Pang S., Beckham R.E., Meissner K.E. // Appl. Phys. Lett. 2008. V. 92. N 22. P. 221108. doi 10.1063/1.2937209
  37. Francois A., Himmelhaus M. // Sensors. 2009. V. 9. N 9. P. 6836. doi 10.3390/s90906836
  38. Beier H.T., Cote G.L., Meissner K.E. // Ann. Biomed. Eng. 2009. V. 37. N 10. P. 1974. doi 10.1007/s10439-009-9713-2
  39. Трофимова Е.Ю., Алексенский А.Е., Грудинкин С.А., Коркин И.В., Курдюков Д.А., Голубев В.Г. // Коллоидный журн. 2011. Т. 73. N 4. С. 535; Trofimova E.Y., Aleksenskii A.E., Grudinkin S.A., Korkin I.V., Kurdyukov D.A., Golubev V.G. // Colloid J. 2011. V. 73. N 4. P. 546. doi 10.1134/S1061933X11040156
  40. Trofimova E.Yu., Kurdyukov D.A., Yakovlev S.A., Kirilenko D.A., Kukushkina Yu.A., Nashchekin A.V., Sitnikova A.A., Yagovkin M.A., Golubev V.G. // Nanotechnol. 2013. V. 24. N 15. P. 155601. doi 10.1088/0957-4484/24/15/155601
  41. Kurdyukov D.A., Eurov D.A., Kirilenko D.A., Kukushkina J.A., Sokolov V.V., Yagovkina M.A., Golubev V.G. // Micro. Mesopor. Mater. 2016. V. 223. P. 225. doi 10.1016/j.micromeso.2015.11.018
  42. Kurdyukov D.A., Eurov D.A., Kirilenko D.A., Sokolov V.V., Golubev V.G. // Micro. Mesopor. Mater. 2018. V. 258. P. 205. doi 10.1016/j.micromeso.2017.09.017
  43. Трофимова Е.Ю., Грудинкин С.А., Кукушкина Ю.А., Курдюков Д.А., Медведев А.В., Яговкина М.А., Голубев В.Г. // ФТТ. 2012. Т. 54. N 6. С. 1220; Trofimova E.Yu., Grudinkin S.A., Kukushkina Yu.A., Kurdyukov D.A., Medvedev A.V., Yagovkina M.A., Golubev V.G. // Phys. Solid State. 2012. V. 54. N 6. P. 1298. doi 10.1134/S1063783412060339
  44. Cho E.-B., Volkov D.O., Sokolov I. // Small. 2010. V. 6. N 20. P. 2314. doi 10.1002/smll.201001337
  45. Kalaparthi V., Palantavida S., Sokolov I. // J. Mater. Chem. C. 2016. V. 4. N 11. P. 2197. doi 10.1039/c5tc04221f
  46. Nelson D.K., Razbirin B.S., Starukhin A.N., Eurov D.A., Kurdyukov D.A., Stovpiaga E.Yu., Golubev V.G. // Opt. Mater. 2016. V. 59. P. 28. doi 10.1016/j.optmat.2016.03.051
  47. Eurov D.A., Kurdyukov D.A., Medvedev A.V., Kirilenko D.A., Tomkovich M.V., Golubev V.G. // Nanotechnol. 2021. V. 32. N 21. P. 215604. doi 10.1088/1361-6528/abe66e
  48. Sathe T.R., Agrawal A., Nie S. // Anal. Chem. 2006. V. 78. N 16. P. 5627. doi 10.1021/ac0610309
  49. Eurov D.A., Kurdyukov D.A., Kirilenko D.A., Kukushkina Yu.A., Nashchekin A.V., Smirnov A.N., Golubev V.G. // J. Nanopart. Res. 2015. V. 17. N 2. P. 82. doi 10.1007/s11051-015-2891-y
  50. Ushakova E.V., Cherevkov S.A., Sokolova A.V., Li Y., Azizov R.R., Baranov M.A., Kurdyukov D.A., Stovpiaga E.Y., Golubev V.G., Rogach A.L., Baranov A.V. // Chemnanomat. 2020. V. 6. N 7. P. 1080. doi 10.1002/cnma.202000154
  51. Stepanidenko E.A., Khavlyuk P.D., Arefina I.A., Cherevkov S.A., Xiong Y., Doring A., Varygin G.V., Kurdyukov D.A., Eurov D.A., Golubev V.G., Masharin M.A., Baranov A.V., Fedorov A.V., Ushakova E.V., Rogach A.L. // Nanomaterials. 2020. V. 10. N 6. P. 1063. doi 10.3390/nano10061063
  52. Cherevkov S., Azizov R., Sokolova A., Nautran V., Miruschenko M., Arefina I., Baranov M., Kurdyukov D., Stovpiaga E., Golubev V., Baranov A., Ushakova E. // Nanomaterials. 2021. V. 11. N 1. P. 119. doi 10.3390/nano11010119
  53. Курдюков Д.А., Еуров Д.А., Медведев А.В., Голубев В.Г. // Письма в ЖТФ. 2020. Т. 46. N 18. С. 42. doi 10.21883/PJTF.2020.18.50002.18402; Kurdyukov D.A., Eurov D.A., Medvedev A.V., Golubev V.G. // Tech. Phys. Lett. 2020. V. 46. N 9. P. 928. doi 10.1134/S1063785020090229
  54. Tang F., Li L., Chen D. // Adv. Mater. 2012. V. 24. N 12. P. 1504. doi 10.1002/adma.201104763
  55. Colilla M., Gonzalez B., Vallet-Regi M. // Biomater. Sci. 2013. V. 1 N 2. P. 114. doi 10.1039/C2BM00085G
  56. He Q., Shi J. // Adv. Mater. 2014. V. 26. N 3. P. 391. doi 10.1002/adma.201303123
  57. Hall J.M.M., Reynolds T., Henderson M.R., Riesen N., Monro T.M., Shahraam Afshar V. // Opt. Expr. 2017. V. 25. N 6. P. 6192. doi 10.1364/OE.25.006192
  58. Righini G.C., Dumeige Y., Feron P., Ferrari M., Nunzi Conti G., Ristic D., Soria S. // Nuovo Cimento. 2011. V. 34. N 7. P. 435. doi 10.1393/ncr/i2011-10067-2
  59. Dukin A.A., Feoktistov N.A., Golubev V.G., Medvedev A.V., Pevtsov A.B., Sel'kin A.V. // Phys. Rev. E. 2003. V. 67. N 4. P. 046602. doi 10.1103/PhysRevE.67.046602

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.