Bessolov V. N.1, Konenkova E. V.1, Orlova T. A.1, Sokura L. A.1,2, Solomnikova A. V.3, Sharofidinov Sh. Sh.1, Shcheglov M. P.1
1Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: sokuraliliy@mail.ru
The morphology of semipolar AlN(10=11) layers grown by HVPE on an AlN/Si(100) template with a thickness of 20 nm formed by MOCVD on a nanostructured silicon substrate was studied by AFM method. The average roughness value for semipolar AlN(10=11) layers was 36 nm for layers with a thickness of 5 mkm, with an FWHM (ω-geometry) of about 2.5o. It is shown that such a combined approach of AlN epitaxy on a nanostructured Si(100) substrate results in smoother epitaxial layers. Keywords: aluminum nitride, nanostructured silicon substrate, vapour-phase epitaxy.
- R. Rounds, B. Sarkar, A. Klump, C. Hartmann, T. Nagashima, R. Kirste. Appl. Phys. Express, 11 (7), 071001 (2018). DOI: 10.7567/APEX.11.071001
- H. Yamashita, K. Fukui, S. Misawa, S. Yoshida. J. Appl. Phys., 50, 896 (1979). DOI: 10.1063/1.326007
- D. Khachariya, S. Mita, P. Reddy, S. Dangi, J.H. Dycus, P. Bagheri, M.H. Breckenridge, R. Sengupta, Sh. Rathkanthiwar, R. Kirste, E. Kohn, Z. Sitar, R. Collazo, S. Pavlidis. Appl. Phys. Lett., 120, 172106 (2022). DOI: 10.1063/5.0083966
- A. Krost, A. Dadgar. Mater. Sci. Eng. B, 93 (1-3), 77 (2002). DOI: 10.1016/S0921-5107(02)00043-0
- Y. Zhang, H. Long, J. Zhang, B. Tan, Q. Chen, S. Zhang, M. Shan, Z. Zheng, J. Dai, C. Chen. CrystEngComm, 21, 4072 (2019). DOI: 10.1039/C9CE00589G
- L. Huang, Y. Li, W. Wang, X. Li, Y. Zheng, H. Wang, Z. Zhang, G. Li. Appl. Surf. Sci., 435, 163 (2018). DOI: 10.1016/j.apsusc.2017.11.002
- H. Masui, S. Nakamura, S.P. DenBaars, U.K. Mishra. IEEE Trans. Electron. Dev., 57, 88 (2010). DOI: 10.1109/TED.2009.2033773
- T. Takeuchi, H. Amano, I. Akasaki. Jpn. J. Appl. Phys., 39, 413 (2000). DOI: 10.1143/JJAP.39.413
- A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck. J. Appl. Phys., 100, 023522 (2006). DOI: 10.1063/1.2218385
- A.M. Smirnov, E.C. Young, V.E. Bougrov, J.S. Speck, A.E. Romanov. J. Appl. Phys., 126, 245104 (2019). DOI: 10.1063/1.5126195
- V.N. Bessolov, E.V. Konenkova, V.N. Panteleev. ZhTF, 90 (12), 2123 (2020). (in Russian). DOI: 10.21883/JTF.2020.12.50130.98-20
- Z.-Z. Zhang, J. Yang, D.-G. Zhao, F. Liang, P. Chen, Z.-S. Liu. Chin. Phys. B, 32, 028101 (2023). DOI: 10.1088/1674-1056/ac6b2b
- A. Bardhan, S. Raghavan. J. Cryst. Growth, 578, 126418 (2022). DOI: 10.1016/j.jcrysgro.2021.126418
- B.T. Tran, H. Hirayama, N. Maeda, M. Jo, S. Toyoda, N. Kamata. Sci. Rep., 5, 14734 (2015). DOI: 10.1038/srep14734
- J. Shen, X. Yang, D. Liu, Z. Cai, L. Wei, N. Xie, F. Xu, N. Tang, X. Wang, W. Ge, B. Shen. Appl. Phys. Lett., 117, 022103 (2020). DOI: 10.1063/5.0010285
- V.N. Bessolov, E.V. Konenkova. ZhTF, 93 (9), 1235 (2023). (in Russian). DOI: 10.21883/JTF.2023.09.56211.31-23
- S. Naritsuka, T. Kondo, H. Otsubo, K. Saitoh, Y. Yamamoto, T. Maruyama. J. Cryst. Growth, 300 (1), 118 (2007). DOI: 10.1016/j.jcrysgro.2006.11.002
- V.N. Bessolov, V.M. Botnariuk, Yu.V. Zhilyaev, E.V. Konenkova, N.K. Poletaev, S.D. Rayevsky, S.N. Rodin, S.L. Smirnov, Sh.Sharofidinov, M.P. Shcheglov, H.S. Park, M. Koike. Pis'ma ZhTF, 32 (15), 60 (2006). (in Russian)
- M.M. Rozhavskaya, W.V. Lundin, S.I. Troshkov, A.F. Tsatsulnikov, V.G. Dubrovskii. Phys. Status Solidi A, 212 (4), 1 (2015). DOI: 10.1002/pssa.201431912
- C. Tholander, B. Alling, F. Tasnadi, J.E. Greene, L. Hultman. Surf. Sci., 630, 28 (2014). DOI: 10.1016/j.susc.2014.06.010
- D. Tzeli, I.D. Petsalakis, G. Theodorakopoulos. J. Phys. Chem. C, 113, 13924 (2009)
- V. Jindal, F. Shahedipour-Sandvik. J. Appl. Phys., 105, 084902 (2009). DOI: 10.1063/1.3106164
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.