Mechanisms of optical gain in heavily doped AlxGa1-xN:Si structures (x=0.56-1)
Bokhan P. A. 1, Zhuravlev K. S. 1, Zakrevsky D. E. 1,2, Malin T. V. 1, Fateev N. V. 1,3
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
3Novosibirsk State University, Novosibirsk, Russia
Email: fateev@isp.nsc.ru

PDF
The optical gain parameters in the six heavily doped AlxGa1-xN:Si structures with x=0.56, 0.62, 0.65, 0.68, 0.74, were experimentally studied at room temperature. Under optical excitation by pulsed radiation with λ=266 nm, the mechanisms of stimulated emission of radiative recombination of nonequilibrium charge carriers, leading to the appearance of broadband radiation in the wide range (350-650 nm) of the spectrum with a high luminescence quantum yield are studied. High optical gain (>103 cm-1) are realized due to the good optical quality of the structures, large donor-acceptor recombination cross sections (~10-15 cm2) and the high density (up to 1020 cm-3) of radiative recombination centers. Keywords: heavily doped AlxGa1-xN structures, optical gain, electron-acceptor recombination, donor-acceptor recombination, AlN/GaN heterostructure, two-dimensional hole gas, p-channel transistor, polarization.
  1. X. Zhao, K. Sun, S. Cui, B. Tang, H. Hu, S. Zhou. Adv. Photon. Res., 4, 2300061 (2023)
  2. J. Wierer, N. Tansu. Laser Photon. Rev., 13, 1900141 (2019)
  3. J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. each, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa--Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback, J.A. Simmons. Adv. Electron. Mater., 4, 1600501 (2018)
  4. P.A. Bokhan, N.V. Fateev, T.V. Malin, I.V. Osinnykh, D.E. Zakrevsky, K.S. Zhuravlev. Optical Mater., 105, 109879 (2020)
  5. P.A. Bokhan, N.V. Fateev, T.V. Malin, I.V. Osinnykh, D.E. Zakrevsky, K.S. Zhuravlev. J. Luminesc., 252, 119392 (2022)
  6. I.V. Osinnykh, T.V. Malin, D.S. Milakhin, V.F. Plyusnin, K.S. Zhuravlev. Jpn. J. Appl. Phys., 58, SCCB27 (2019)
  7. P.A. Bokhan, N.V. Fateev, T.V. Malin, I.V. Osinnykh, Dm.E. Zakrevsky, K.S. Zhuravlev. J. Luminesc., 203, 127 (2018)
  8. P.A. Bokhan, K.S. Zhuravlev, Dm.E. Zakrevsky, T.V. Malin, I.V. Osinnykh, N.V. Fateev. Pisma ZhTF, 45 (18), 48 (2019). (in Russian)
  9. I.A. Zarubin, V.A. Labusov, S.A. Babin. Zavod. lab. Diagnostika materialov, 85, 1, 117, (2019). (in Russian)
  10. B. Guo, Z.R. Qiu, K.S. Wong. Appl. Phys. Lett., 82, 2290 (2003)
  11. O. Zvelto. Principy lazerov (M., Mir, 1990) p. 560. (in Russian)
  12. D.G. Thomas, J.J. Hopfield, W.A Augustyniak. Phys. Rev., 140, A202 (1965)
  13. VF. Agekyan, N.R. Grigoryeva. Lyuminescenciya poluprovodnikovykh kristallov (SPb., Izd-vo Sankt-Peterburgskogo gos. un-ta, 2016) p. 155. (in Russian)
  14. S. Kuck. Appl. Phys. B, 72 515 (2001)
  15. U. Ozgur, G. Webb.Wood, H.O. Everitt, F. Yun, H. Morkoc. Appl. Phys. Lett., 79, 4103 (2001)
  16. P.A. Bokhan, K.S. Zhuravlev, Dm.E. Zakrevsky, T.V. Malin, I.V. Osinnykh, N.V. Fateev. FTP, 56 (12), 1125 (2022). (in Russian)
  17. R. Quay. Gallium Nitride Electronics (Springer-Verlag, Berlin-Heidelberg, 2008) p. 470.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru