Triboelectric generation by friction of heavily doped diamond probes on a p-Si surface
Alekseev P. A.1, Sakhno D. D.1, Dunaevskiy M. S.1
1Ioffe Institute, St. Petersburg, Russia
Email: npoxep@gmail.com

PDF
The generation of triboelectric current during friction of diamond probes on the surface of p-Si substrates with a native oxide layer was studied. The choice of probes with different doping, as well as substrates with different surface orientations, made it possible to establish the determining influence of the probe-surface work functions difference on the direction and value of the triboelectric current. The generation of triboelectric current occurs due to the tunneling of non-equilibrium charge carriers resulting from the chemical bonds breaking during friction. Under illumination conditions, an increase in the triboelectric current was observed, as well as the photocurrent appearance due to the charge carriers separation in the space charge region. Keywords: triboelectricity, triboelectric generation, silicon, doped diamond, tunneling, photocurrent.
  1. G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing, J. Chen, Z.L. Wang. Advanced Mater., 26 (23), 3788 (2014)
  2. Z.L. Wang. Materials Today, 20 (2), 74 (2017)
  3. R. Yang, R. Xu, W. Dou, M. Benner, Q. Zhang, J. Liu. Nano Energy, 83, 105849 (2021)
  4. S. Lin, R. Shen, T. Yao, Y. Lu, S. Feng, Z. Hao, H. Zheng, Y. Yan, E. Li. Advanced Sci., 6 (24), 1901925 (2019)
  5. P. Yudin, A. Tagantsev. Nanotechnology, 24 (43), 432001 (2013)
  6. K.M. Abdelaziz, J. Chen, T.J. Hieber, Z.C. Leseman. J. Electrostatics, 96, 10 (2018)
  7. J.Y. Park, M. Salmeron. Chem. Rev., 114 (1), 677 (2014)
  8. J. Liu, M. Miao, K. Jiang, F. Khan, A. Goswami, R. McGee, Z. Li, L. Nguyen, Z. Hu, J. Lee, K. Cadien, T. Thundat. Nano Energy, 48, 320 (2018)
  9. S. Lin, Y. Lu, S. Feng, Z. Hao, Y. Yan. Advanced Mater., 31 (7), 1804398 (2019)
  10. V.A. Sharov, P.A. Alekseev, B.R. Borodin, M.S. Dunaevskiy, R.R. Reznik, G.E. Cirlin. ACS Appl. Energy Mater., 2 (6), 4395 (2019)
  11. M. Zheng, S. Lin, L. Xu, L. Zhu, Z.L. Wang. Advanced Mater., 32 (21), 2000928 (2020)
  12. Y. Tsay, K. Ananthanarayanan, P. Gielisse, S. Mitra. J. Appl. Phys., 43 (9), 3677 (1972)
  13. P. Alekseev, B. Borodin, M. Dunaevskii, A. Smirnov, V.Y. Davydov, S. Lebedev, A. Lebedev. Techn. Phys. Lett., 44 (5), 381 (2018)
  14. M. Kratzer, O. Dimitriev, A. Fedoryak, N. Osipyonok, P. Balaz, M. Balaz, M. Tesinsky, C. Teichert. J. Appl. Phys., 125 (18), 185305 (2019)
  15. G. Shao. Energy Environ. Mater., 4 (3), 273 (2021)
  16. S. Ferrie, N. Darwish, J.J. Gooding, S. Ciampi. Nano Energy, 78, 105210 (2020)
  17. W.N. Hansen, G.J. Hansen. Surf. Sci., 481 (1), 172 (2001)
  18. L. Diederich, O. Kuttel, P. Aebi, L. Schlapbach. Surf. Sci., 418 (1), 219 (1998)
  19. P.A. Alekseev, V.A. Sharov, B.R. Borodin, M.S. Dunaevskiy, R.R. Reznik, G.E. Cirlin. Micromachines, 11 (6), 581 (2020)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru