Influence of cooling rate on the size of zinc sulphide nanoparticles during laser ablation synthesis
Kharkova A. V.1, Kochuev D. A.1, Chernikov A. S.1, Kurilova U. E.2, Voznesenskaya A. A.1, Galkin A. F.1, Abramov D. V.1, Kazak A. V.3, Gerasimenko A. Y.4, Khorkov K. S.1
1Stoletovs Vladimir state university, Vladimir, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
3Moscow Polytechnic University, Moscow, Russia
4National Research University of Electronic Technology, Zelenograd, Moscow, Russia
Email: alenaenergie@gmail.com

PDF
The paper examines the dependence of the sizes of the resulting nanoparticles on the cooling rate of the products of laser ablation of zinc sulfide. The influence of the buffer gas pressure parameter on the dynamics of cooling of ablation products is considered. The results of an assessment of the cooling of nanoparticles due to thermal radiation and collisions with a buffer gas are presenting. The results were obtaining based on molecular dynamics methods. Keywords: ablative synthesis of nanoparticles, control of nanoparticle dispersion.
  1. I.N. Zavestovskaya, A.I. Kasatova, D.A. Kasatov. Int. J. Molecular Sci., 24 (23), 17088 (2023). DOI: 10.3390/ijms242317088
  2. U.E. Kurilova, A.S. Chernikov, D.A. Kochuev. J. Biomedical Phot. Eng., 9 (2), 020301 (2023). DOI: 10.18287/JBPE23.09.020301
  3. V.V. Osipov, V.V. Platonov, A. Murzakaev. Bull. Lebedev Physics Institute, 49 (1), 68 (2022). DOI: 10.3103/S1068335622130085
  4. A.S. Chernikov, D.A. Kochuev, A.A. Voznesenskaya. J. Phys.: Conf. Ser., 2077 (1), 012002 (2021). DOI: 10.1088/1742-6596/2077/1/012002
  5. D.A. Kochuev, K.S. Khorkov, A.A. Voznesenskaya, R.V. Chkalov, V.G. Prokoshev (eds). 2018 Int. Conf. Laser Optics (ICLO) (IEEE, St. Petersburg, Russia, 2018) p. 335. DOI: 10.1109/LO.2018.8435807
  6. A.S. Chernikov, D.A. Kochuev, A.V. Ivashchenko. J. Phys.: Conf. Ser., 1331, 012012 (2019). DOI: 10.1088/1742-6596/1331/1/012012
  7. A.A. Ionin, S.I. Kudryashov, A.A. Samokhin. Phys.-Usp., 60, 149 (2017). DOI: 10.3367/UFNe.2016.09.037974
  8. Takato Yoichi, Benson Michael E, Sen Surajit. Proc. R. Soc., 474, 20170723 (2018). DOI: 10.1098/rspa.2017.0723
  9. N. Lasemi, C. Rentenberger, G. Liedl. Nanoscale Advances, 2 (9), 3991 (2020). DOI: 10.1039/D0NA00317D
  10. J. Zhang, J. Claverie, M. Chaker. ChemPhysChem, 18 (9), 986 (2017). DOI: 10.1002/cphc.201601220
  11. M. Kim, S. Osone, T. Kim. KONA Powder and Particle J., 34, 80 (2017). DOI: 10.14356/kona.2017009
  12. Tr. 10-j Vseross. konf. "Neobratimye protsessy v prirode i tekhnike" (Moskva, 27-29 yanvarya 2019) ch. 2, s. 94-97. (in Russian)
  13. D.S. Rodionov. Nediabaticheskie perelhody pri medlennykh atomnykh stolknoveniyakh. Avtoref. land. dis. (SPb., Ros. gos. ped. un-t im. A.I. Gertsen, 2014). (in Russian)
  14. V.Y. Levashov, P.V. Kozlov, N.G. Bykova. Russ. J. Phys. Chem., 15 (1), 56 (2021). DOI: 10.1134/S1990793121010097

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru