Identification of the main recombination channels in lightly doped layers of GaAs p-i-n diodes before and after irradiation with 1 MeV neutrons
Sobolev M. M.
1, Soldatenkov F. Yu.
1, Kozlov V. A.
11Ioffe Institute, St. Petersburg, Russia
Email: m.sobolev@mail.ioffe.ru, f.soldatenkov@mail.ioffe.ru
High-voltage GaAs p+-p0-i-n0-n+ diodes, fabricated by liquid-phase epitaxy in a hydrogen environment, were studied before and after irradiation with neutrons with an energy of 1 MeV and a fluence of 2.9·1013 cm-2. The main channels of recombination of minority carriers in the base n0-layers of high-voltage GaAs diodes before and after neutron irradiation were determined using methods of deep-level transient spectroscopy and control of the dynamics of reverse recovery of diodes. The correspondence of the lifetime values of nonequilibrium charge carriers determined using both methods has been found. It was revealed that HL2 defects are the main recombination centers in diodes before irradiation, determining their dynamic characteristics and the lifetime of minority carriers in the lightly doped base layers. It has been established that after neutron irradiation, the dynamics of forward and reverse switching processes is determined by recombination through deep acceptor-like D- states of three-charged centers of radiation defect bands. It is found that in lightly doped GaAs layers, a damage defect surrounded by a large Coulomb barrier exhibits configurational metastability controlled by optical illumination. Keywords: GaAs, neutron irradiation, capacitance spectroscopy, p0-i-n0 junction, liquid-phase epitaxy, reverse recovery of diodes.
- Zh.I. Alferov, V.I. Korol'kov, V.G. Nikitin, M.N. Stepanova, D.N. Tret'yakov. Sov. Techn. Phys. Lett., 2 (2), 76 (1976)
- P. Scharf, F.A. Velarde Gonzalez, A. Lange, T. Urban, V. Dudek. Romanian J. Inform. Sci. Technol., 25 (2), 224 (2022). https://www.romjist.ro/full-texts/paper718.pdf
- P. Cova, R. Menozzi, M. Portesine. Microelectron. J., 37 (5), 409 (2006). https://doi.org/10.1016/j.mejo.2005.05.027
- F. Cappelluti, F. Bonani, M. Furno, G. Ghione, R. Carta, L. Bellemo, C. Bocchiola, L. Merlin. Microelectron. J., 37 (3), 190 (2006). DOI:10.1016/j.mejo.2005.09.026
- M.M. Sobolev, F.Y. Soldatenkov. Semiconductors, 52 (10), 165 (2018)
- M.M. Sobolev, F.Y. Soldatenkov, I.L. Shul`pina. J. Appl. Phys., 123, 161588 (2018). https://doi.org/10.1063/1.5011297
- M.M. Sobolev, F.Y. Soldatenkov. Semiconductors, 54 (2), 1260 (2020)
- M.M. Sobolev, F.Y. Soldatenkov, V.G. Danil'chenko. J. Appl. Phys. 128, 095705 (2020). https://doi.org/10.1063/5.0018317
- C.E. Barnes, T.E. Zipperian, L.R. Dawson. J. Electron. Mater., 14 (2), 95 (1985). https://doi.org/10.1007/BF02656670
- R.M. Fleming, D.V. Lang, C.H. Seager, E. Bielejec, G.A. Patrizi, J.M. Campbell. J. Appl. Phys., 107, 123710-5 (2010). DOI: 10.1063/1.3448118
- N.M. Lebedeva, F.Y. Soldatenkov, M.M. Sobolev, A.A. Usikova. J. Phys.: Conf. Ser., 2227, \#012019 (2022). http://dx.doi.org/10.1088/1742-6596/2227/1/012019
- M.M. Sobolev, F.Y. Soldatenkov. Semiconductors, 56, 107 (2022). https://doi.org/10.1134/S1063782622010158)
- M.M. Sobolev, F.Y. Soldatenkov, V.A. Kozlov. Semiconductors, 50 (7), 924 (2016). https://doi.org/10.1134/S1063782616070241)
- M.M. Sobolev, F.Y. Soldatenkov, V.A. Kozlov. Jpn. J. Appl. Phys., 62 (10), 104002 (2023). https://iopscience.iop.org/article/10.35848/1347-4065/acfd72
- V.A. Kozlov, F.Y. Soldatenkov, V.G. Danil'chenko, V.I. Korol'kov, I.L. Shul'pina. Proc. 25th Advanced Semiconductor Manufacturing Conf. (Saratoga Springs, USA, May 19--21, 2014) p. 139. DOI: 10.1109/ASMC.2014.6847011
- A. Mitonneau, G.M. Martin, A. Mircea. Electron. Lett., 13 (22), 666 (1977). https://doi.org/10.1049/el:19770473
- B. Lax, S.F. Neustadter. J. Appl. Phys., 25 (9), 1148 (1954). https://doi.org/10.1063/1.1721830
- Y.R. Nosov. Switching in semiconductor diodes (Plenum Press, N.Y., 1969). https://doi.org/10.1007/978-1-4684-8193-8)
- R.H. Kingston. Proc. IRE, 42 (5), 829 (1954). DOI: 10.1109/JRPROC.1954.274521
- S.M. Sze. Physics of Semiconductor Devices, 2nd ed. (N.Y., Wiley-Interscience, 1981)
- P.G. Neudeck. J. Electron. Mater., 27 (4), 317 (1998). https://doi.org/10.1007/s11664-998-0408-5
- H.J. Kuno. IEEE Trans. Electron Dev., 11 (1), 8 (1964). DOI: 10.1109/T-ED.1964.15272
- H.J. Fink. Solid-State Electron., 7 (11), 823 (1964). https://doi.org/10.1016/0038-1101(64)90134-0
- Y. Jung, A. Vacic, D.E. Perea, S.T. Picraux, M.A. Reed. Nanowires Adv. Mater., 23, 4306 (2011). DOI: 10.1002/adma.201101429
- M. Dutta, S. Mandal, R. Hathwar, A.M. Fischer, F.A.M. Koeck, R.J. Nemanich, S.M. Goodnick, S. Chowdhury. IEEE Electron Dev. Lett., 39 (4), 552 (2018). DOI: 10.1109/LED.2018.2804978
- A. Sharma, P. Kumar, B. Singh, S.R. Chaudhuri, S. Ghosh. Appl. Phys. Lett., 99 (2), 023301 (2011). https://doi.org/10.1063/1.3607955
- M.M. Sobolev, D.A. Yavsin, S.A. Gurevich. Semiconductors, 53 (10), 1392 (2019). DOI: 10.1134/S1063782619100208)
- W.E. Meyer. Digital DLTS studies on radiation induced defects in Si, GaAs and GaN. Submitted in partial fulfillment of the degree PhD (Physics) in the Faculty of Natural \& Agricultural Science, University of Pretoria (2007). https://repository.up.ac.za/bitstream/handle/2263/25602/ Complete.pdf?sequence=6\&isAllowed=y
- J. Hubbard. Proc. Roy. Soc., A 276, 238 (1963). https://doi.org/10.1098/rspa.1963.0204
- M. Levinson, J.L. Benton, L.C. Kimerling. Phys. Rev., B 27, 6216 (1983). https://doi.org/10.1103/PhysRevB.27.6216
- M.M. Sobolev, O.S. Ken, O.M. Sreseli, D.A. Yavsin, S.A. Gurevich. Semicond. Sci. Technol., 34 (8), 085003 (2019). https://iopscience.iop.org/article/10.1088/1361-6641/ ab2c21/pdf
- A.G. Milnes. Deep Impurities in Semiconductors (Wiley-Interscience Publication, John Wiley and Sons Inc., N.Y.--London--Sydney--Toronto, 1973)
- V.L. Bonch-Bruevich, S.G. Kalashnikov. Physics of Semiconductors (Moscow, Nauka, 1977)
- A.M. Stoneham. Rep. Prog. Phys., 44 (12), 1251 (1981). DOI: 10.1088/0034-4885/44/12/001
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.