Electrical Properties of Highly Nitrogen-Doped Synthetic Single Crystal Diamonds Grown at High Pressure and Temperature
Buga S.G 1,2, Kupriyanov I. N. 3, Borzdov Yu. M. 3, Kuznetsov M. S. 1, Luparev N. V. 1, Nosukhin S.A. 1, Kulnitskiy B.A. 1,2, Prikhodko D. D. 1,2, Palyanov Yu. M. 3
1Technological Institute for Superhard and Novel Carbon Materials, Moscow, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia
3Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
Email: buga@tisnum.ru, spectra@igm.nsc.ru, borzdov60@mail.ru, mikuz@yandex.ru, dedsan@yandex.ru, boris@tisnum.ru, dmitrii.prikhodko@phystech.edu, palyanov@igm.nsc.ru

PDF
Using the temperature gradient method at high pressure and temperature (TG-HPHT), we have grown 3 diamond single crystals from growth media Co-Fe-C-N and Ni-Fe-C-N with a concentration of singly substitutional nitrogen atoms (C centers) in the range (0.7-1.35)· 1020 cm-3. Samples were made from 2 of them for the study of electrical properties by the Hall effect method in van der Pauw geometry. The dependences of the resistivity and the Hall coefficient on temperature are investigated, by which the temperature dependences of the concentration of free electrons and their Hall mobility are calculated. For a sample with a concentration of C centers ~ 1020 cm-3, the temperature dependence of electrical conductivity was investigated. At T>650 K, linear sections of ln(σ) dependences on the inverse temperature 1/T are observed, on the basis of which the activation energies of conductivity 1.5-1.64 eV are determined, higher than those of previously studied samples with a lower nitrogen concentration grown by the same method. In samples with C-center concentrations of 0.7·1020 and 1.35· 1020 cm-3, the dependences of ln(n) on 1/T are linear throughout the studied temperature range. Based on them, the values of donor ionization energy Ed=1.32 eV; 1.53 eV, and compensation ratios equal to k=25 and 45% are calculated, which are significantly higher than the values for diamonds with a lower nitrogen concentration studied before. It is assumed that the acceptors are iron atoms, complexes of iron and nitrogen atoms in the substitutional position, complexes of iron atoms with vacancies, as predicted theoretically, as well as similar impurity centers based on nickel and cobalt atoms. Keywords: n-type semiconductor diamond, nitrogen doping, electrical resistance, Hall mobility of free electrons, ionization energy of donors, activation energy of conductivity.
  1. R.G. Farrer. Solid State Commun., 7, 685 (1969)
  2. F.J. Heremans, G.D. Fuchs, C.F. Wang, R. Hanson, D.D. Awschalom. Appl. Phys. Lett., 94, 15 2102 (2009)
  3. S.G. Buga, G.M. Kvashnin, M.S. Kuznetsov, N.V. Kornilov, N.V. Luparev, D.D. Prikhodko, S.A. Terentiev, V.D. Blank. Appl. Phys. Lett., 124, 102107 (2024)
  4. H.B. Dyer, F.A. Raal, L. Du Preez, J.H.N. Loubser. Phil. Mag., 11, 763 (1965)
  5. M. Kubovic, H. El-Hajj, J.E. Butler, E. Kohn. Diamond. Relat. Mater., 16 1033 (2007)
  6. T. Matsumoto, T. Mukose, T. Makino. Diamond. Relat. Mater., 75, 152 (2017)
  7. T. Matsumoto, T. Yamakawa, H. Kato, T. Makino, M. Ogura, X. Zhang, T. Inokuma, S. Yamasaki, N. Tokuda. Appl. Phys. Lett., 119, 242105 (2021)
  8. M.A. Lobaev, D.B. Radishev, S.A. Bogdanov, A.L. Vikharev, A.M. Gorbachev, V.A. Isaev, S.A. Kraev, A.I. Okhapkin, E.A. Arhipova, M.N. Drozdov, V.I. Shashkin. Phys. Status Solidi RRL, 17, 2000347 (2020)
  9. S.G. Buga, N.V. Kornilov, M.S. Kuznetsov, N.V. Luparev, D.D. Prikhodko, S.A. Tarelkin, T.E. Drozdova, V.D. Blank. Tech. Phys. Lett., 50 (3), 37 (2024)
  10. S. Salvatori, S. Pettinato, M. Girolami, D.M. Trucchi, M.C. Rossi. IEEE Trans. Electron Dev., 70 (5), 2330 (2023)
  11. I. Stenger, M.-A. Pinault-Thaury, T. Kociniewski, A. Lusson, E. Chikoidze, F. Jomard, Y. Dumont, J. Chevallier, J. Barjon. J. Appl. Phys., 114, 073711 (2013)
  12. E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Mel'nik, N.J. Curro, J.D. Thompson, S.M. Stishov. Nature, 428, 542 (2004)
  13. Y. Takano. J. Phys.: Condens. Matter., 21, 253201 (2009)
  14. Y. Ma, J.S. Tse, T. Cui, D.D. Klug, L. Zhang, Y. Xie, Y. Niu, G. Zou. Phys. Rev. B, 72, 014306 (2005)
  15. E. Bustarret. Physica C: Superconductivity and its Applications (Elsevier, 2015) v. 514
  16. F.J.R. Costa, J.S. de Almeida. J. Appl. Phys., 129, 043903 (2021)
  17. J. Barzola-Quiquia, M. Stiller, P.D. Esquinazi, A. Molle, R. Wunderlich, S. Pezzagna, J. Meijer, W. Kossack, S. Buga. Sci. Rep., 9, 8743 (2019)
  18. A. Setzer, P.D. Esquinazi, O. Daikos, T. Scherzer, A. Poppl, R. Staacke, T. Luhmann, S. Pezzagna, W. Knolle, S. Buga, B. Abel, J. Meijer. Phys. Status Solidi B, 258, 2100395 (2021)
  19. S.G. Buga, V.A. Kulbachinskiy, G.M. Kvashnin, M.S. Kuznetsov, S.A. Nosukhin, E.A. Konstantinov, V.V. Belov, D.D. Prikhodko. Diamond. Relat. Mater., 142, 110759 (2024)
  20. Y.N. Palyanov, I.N. Kupriyanov, A. F. Khokhryakov, V.G. Ralchenko. Chap. 17, Crystal growth of diamond, in Handbook of Crystal Growth, ed. by P. Rudolph (Elsevier Science Ltd, 2015). ISBN 978-0-444-63303-3
  21. B. Gelmont, M.S. Shur. J. Appl. Phys., 78, 2846 (1995)
  22. Power Electronics Device Applications of Diamond Semiconductors. Woodhead Publishing Series in Electronic and Optical Materials, ed. by S. Koizumi et al. (Woodhead Publishing, 2018) p. 178
  23. N. Donato, N. Rouger, J. Pernot, G. Long. J. Phys. D: Appl. Phys., 53, 093001 (2020)
  24. M.D. Alshahrani, J.P. Goss, P.R. Briddon, M.J. Rayson, C.V. Peaker. Diamond. Relat. Mater., 148, 111332 (2024)
  25. Y. Borzdov, Y. Pal'yanov, I. Kupriyanov, V. Gusev, A. Khokhryakov, A. Sokol, A. Efremov. Diamond. Relat. Mater., 11, 1863 (2002)
  26. Y.N. Palyanov, Y.M. Borzdov, A.F. Khokhryakov, I.N. Kupriyanov, A.G. Sokol. Cryst. Growth Des., 10, 3169 (2010)
  27. S.G. Buga, G.M. Kvashnin, M.S. Kuznetsov, N.V. Kornilov, N.V. Luparev, M. Yao. Semiconductors, 57 (5), 360 (2023)
  28. M.N.R. Ashfold, J.P. Goss, B.L. Green, P.W. May, M.E. Newton, C.V. Peaker. Chem. Rev., 120, 5745 (2020)
  29. U.F.S. D'Haenens-Johansson. J.E. Butler, A.N. Katrusha. Rev. Mineral. Geochem., 88, 689 (2022)
  30. A.M. Zaitsev. Optical properties of diamond: a data handbook (Springer, Berlin-N. Y., 2001)
  31. M. Katagiri, J. Isoya, S. Koizumi, H. Kanda. Appl. Phys. Lett., 85, 6365 (2004).http://dx.doi.org/10.1063/1.1840119
  32. H. Kato, M. Ogura, T. Makino, D. Takeuchi, S. Yamasaki. Appl. Phys. Lett., 109, 2102 (2016)
  33. I. Stenger, M.-A. Pinault-Thaury, N. Temahuki, R. Gillet, S. Temgoua, H. Bensalah, E. Chikoidze, Y. Dumont, J. Barjon. J. Appl. Phys., 129, 105701 (2021)
  34. J.S. Blakemore, in Semiconductor Statistics, ed. by H.K. Henisch (Pergamon Press, 1962)
  35. N. Naka, K. Fukai, Y. Handa, I. Akimoto. Phys. Rev. B, 88, 035205 (2013)
  36. R. Jones, P. Goss, P. R. Briddon. Phys. Rev. B, 80, 033205 (2009)
  37. A. Platonenko, W.C. Mackrodt, R. Dovesi. Materials, 16, 1979 (2023)
  38. R. Ulbricht, S.T. van der Post, J.P. Goss, P.R. Briddon, R. Jones, R.U.A. Khan, M. Bonn. Phys. Rev. B, 84, 165202 (2011)
  39. A.T. Collins, Diamond. Relat. Mater., 9, 417 (2000)
  40. A. Elisseyev, H. Kanda. New Diamond. Front. Carbon Technol., 17 (3), 127 (2007).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru