High-Q states in the emission spectra of linear periodic chains of Si nanodisks with embedded GeSi quantum dots
Zinovyev V. A.
1, Smagina Zh. V.
1, Zinovieva A. F.
1,2, Rodyakina E. E.
1,2, Kacyuba A. V.
1, Kuchinskaya P. A.
1, Astankova K. N.
1, Baryshnikova K. V.
3, Petrov M. I.
3, Mikhailovskii M. S.
3, Verbus V. A.
4,5, Stepikhova M. V.
4, Novikov A. V.
4,61Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
3ITMO University, St. Petersburg, Russia
4Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
5National Research University Higher School of Economics, Nizhny Novgorod, Russia
6Lobachevsky State University, Nizhny Novgorod, Russia
Email: zinoviev@isp.nsc.ru, smagina@isp.nsc.ru, aigul@isp.nsc.ru, rodyakina@isp.nsc.ru, kacyuba@isp.nsc.ru, polina@isp.nsc.ru, astankova-kn@isp.nsc.ru, k.baryshnikova@metalab.ifmo.ru, m.petrov@metalab.ifmo.ru, m.mikhailovskii@metalab.ifmo.ru, verbus@ipmras.ru, mst@ipmras.ru, anov@ipmras.ru
In this work the luminescent properties of structures with linear periodic chains of Si nanodisks with embedded GeSi quantum dots were studied. It was found that the formation of linear chains of resonators leads to a change in the intensity and directivity of quantum dots emission. Narrow high-Q peaks that are associated with collective modes in linear chains appear in the spectrum. A theoretical analysis of the dependence of the mode quality factor on the parameters of linear chains has shown that, under certain parameters, states that are close in nature to symmetry-protected bound states in the continuum can be realized. Keywords: luminescence, quantum dots, silicon, germanium, nanodisks, linear chains, collective modes.
- S. Joseph, S. Pandey, S. Swagato, J. Joseph. Nanophotonics, 10, 14175 (2021)
- M. Rybin, Y. Kivshar. Nature, 541, 164 (2017)
- E.N. Bulgakov, D.N. Maksimov. Opt. Express, 25, 14134 (2017)
- V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, J. Schilling. APS Photonics, 8, 209 (2021)
- E.M. Purcell. Phys. Rev., 69, 681 (1946)
- K.J. Vahala. Nature, 424, 839 (2003)
- Z.F. Sadrieva, M.A. Belyakov, M.A. Balezin, P.V. Kapitanova, E.A. Nenasheva, A.F. Sadreev, A.A. Bogdanov. Phys. Rev. A, 99, 053804 (2019)
- M.S. Sidorenko, O.N. Sergaeva, Z.F. Sadrieva, C. Roques-Carmes, P.S. Muraev, D.N. Maksimov, A.A. Bogdanov. Phys. Rev. A, 15, 034041 (2021)
- C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M.R. Vogt, I. Kroger, S. Winter, A. Schirmacher, S. Lim, H.T. Nguyen, D. MacDonald. AIP Advances, 5, 67168 (2015)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.