01;02 Параметрическая идентификация модели водородопроницаемости по временам запаздывания

© Ю.В. Заика, Е.П. Борматова

Институт прикладных математических исследований Карельского научного центра РАН, 185910 Петрозаводск, Россия e-mail: zaika@krc.karelia.ru

(Поступило в Редакцию 7 апреля 2009 г.)

Рассматривается обратная задача определения параметров нелинейной модели водородопроницаемости с динамическими граничными условиями. В зависимости от объема экспериментальной информации предложены алгоритмы оценки параметров переноса: адсорбции, десорбции, растворения и диффузии.

Введение

Моделирование в области водородного материаловедения обусловлено перспективами водородной энергетики и проблемой защиты конструкционных материалов от водородной коррозии [1]. Экспериментальный метод проницаемости является классическим [2]. Вместе с тем при обработке экспериментальных данных имеется разброс в оценках значений параметров моделей. Одна из основных причин: обратные задачи математической физики характеризуются высокой чувствительностью к экспериментальным и вычислительным погрешностям. Кроме того, традиционный "метод подгонки" обычно не гарантирует единственности набора параметров, удовлетворительно аппроксимирующих экспериментальные кривые. Поэтому, во-первых, необходимо определить объем данных, достаточный для однозначной параметрической идентификации модели. Во-вторых, алгоритм оценки параметров должен быть корректным (в частности, не содержащим дифференцирования зашумленных измерений).

Будем ориентироваться на следующий вариант эксперимента. Пластина толщиной l из исследуемого материала (металл или сплав) является перегородкой вакуумной камеры. При фиксированной температуре $T = \overline{T}$ образца с входной стороны скачкообразно создается давление $\overline{p}_0 = \text{const}$ молекулярного водорода. С выходной стороны производится вакуумирование и с помощью масс-спектрометра определяется десорбционный поток J = J(t) (t — время). Потоки подразумеваются отнесенными к единице площади, т.е. речь идет о плотностях. На самом деле измеряется давление на выходе:

$$p_{l}(t) = \theta_{1} \int_{0}^{t} \exp\{(\tau - t)\theta_{0}^{-1}\}J(\tau)d\tau,$$
$$J(t) = \left[\dot{p}_{l}(t) + p_{l}(t)\theta_{0}^{-1}\right]\theta_{1}^{-1},$$

где θ_i — характеристики вакуумной установки. Вычисление *J* по p_l — обратная задача, на которой не останавливаемся (см., например, [3]). По достижении стационарного состояния $J(t) \approx \overline{J} = \text{const}, t \ge t_*$, на входе резко увеличиваем давление до значения $\overline{p}_0^+ > \overline{p}_0$ и

дожидаемся последующего установления десорбции при $t \ge t^* > t_*$. Такой вариант предпочтительнее двух классических экспериментов, поскольку нет необходимости в повторной дегазации образца и "старт" второго этапа происходит не с нулевого начального распределения атомарного водорода в пластине, а с предшествующего стационарного состояния (разнообразие повышает информативность). Выход на стационарное состояние носит асимптотический характер. Но t_* и t^* не следует выбирать слишком большими, чтобы переходные процессы "не потерялись" на фоне стационарных.

Зависимость параметров от температуры T считаем аррениусовской. Например, для коэффициента диффузии $D = D_0 \exp\{-E_D/[RT]\}$. При необходимости допустимы другие зависимости от T, далее это не принципиально, поскольку в течение эксперимента температура постоянна. Значения давления и концентрации c(t, x) растворенного водорода считаем относительно малыми: $D \neq D(c)$. Поскольку речь идет об обратных задачах и экспериментальные погрешности в лучшем случае оцениваются в 10–20%, то авторы старались ограничиться минимальным набором коэффициентов, подлежащих определению.

Математическая модель

Рассмотрим следующую модель с поверхностной десорбцией [4]:

$$\begin{aligned} \frac{\partial c}{\partial t} &= D \frac{\partial^2 c}{\partial x^2}, \qquad (t, x) \in (0, t_*) \times (0, l), \\ c(0, x) &= 0, \qquad x \in [0, l], \qquad P \equiv \mu s \bar{p}_0, \qquad (1) \\ \dot{q}_0(t) &= P - b q_0^2(t) + D \frac{\partial c}{\partial x} \Big|_{x=0}, \end{aligned}$$

$$\dot{q}_l(t) = -bq_l^2(t) - D \left. \frac{\partial c}{\partial x} \right|_{x=l}, \qquad t \in [0, t_*], \qquad (2)$$

$$c_0(t) \equiv c(t, 0) = gq_0(t), \quad c_l(t) \equiv c(t, l) = gq_l(t).$$
 (3)

Здесь μ — кинетический коэффициент, s(T) — коэффициент прилипания, b(T) — коэффициент десорбции, g(T) — параметр соответствия поверхностной и

объемной концентраций. Смысл граничных условий (2): дисбаланс потоков адсорбции, десорбции и диффузии идет на накопление атомов водорода H на поверхности. Вакуумная система достаточно мощная, чтобы пренбречь ресорбцией: $\mu s p_l \approx 0$. Более точная модель растворения на поверхности:

$$k^{+}(T)c_{0,l}(t) \left[1 - q_{0,l}(t)q_{\max}^{-1} \right] \\ - k^{-}(T)q_{0,l}(t) \left[1 - c_{0,l}(t)c_{\max}^{-1} \right] = \pm D(T)c_{x} |_{0,l}$$

Но когда диффузия значительно медленнее поверхностных процессов $(Dc_x \ll 1)$ и концентрации малы, имеем условие быстрой растворимости $c_{0,l} \approx gq_{0,l}$, где $g = k^-/k^+$. Если поверхность изотропна (в смысле $E_{k^-} \approx E_{k^+}$), то параметр g слабо зависит от T. По измерениям известна функция $J(t) \equiv J_l(t) = bq_l^2(t)$. Для второго этапа эксперимента ($t \in [t_*, t^*]$) начальное распределение $c(t_*, x)$ — стационарное, а давление \bar{p}_0 заменяем на \bar{p}_0^+ .

Влияние дефектов

Вместо уравнения диффузии имеем систему

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - a_1 c + a_2 w, \qquad \frac{\partial w}{\partial t} = a_1 c - a_2 w$$

Здесь w(t, x) — концентрация атомов водорода в ловушках (в частности, в микропорах), a_i — коэффициенты обратимого захвата. При необходимости можно ограничить емкость ловушек: $a_1 c \to a_1 c [1 - w/w_{\text{max}}]$. Такая грубая модель может лишь ответить на вопрос: "сколько задерживается" водорода. Не учитываются и сложные структурно-фазовые превращения [5]. Для практических целей это часто допустимо. Кривые проницаемости имеют стандартный S-образный вид кривой насыщения. Значения а_i не влияют на стационарное значение десорбции J. При $a_i > 0$ график J(t) сначала прогибается (накопление в дефектах), затем становится вогнутым, стационарное состояние достигается позже. Так что если удалось совместить основу — модельный и экспериментальный уровень Ј, то, когда характерное влияние дефектов заметно, значения а_i нетрудно подобрать численно. Помимо захвата могут быть ловушки других типов — например, включения гидридной фазы \tilde{w} . Тогда формально считаем $\tilde{a}_1 = 0$, а $\tilde{a}_2 > 0$ лишь при $T \ge T_{\text{crit}}$, $\tilde{w}(0, x) = \text{const} > 0$. Дополнительные трудности возникают при учете условий сопряжения на стыке слоев (покрытия) [6,7] и разложения гидридных фаз [8].

Решение прямой задачи

Существование и единственность обобщенного решения краевой задачи с динамическими граничными условиями доказаны в [9]. Вначале входная сторона пластины испытывает ударную нагрузку из-за скачка давления. В связи с этим (и вследствие нелинейности задачи) схема вычислений носит неявный и итерационный характер. В алгоритме идентификации используются лишь интегральные соотношения, что сглаживает начальный δ -образный эффект, повышает устойчивость к помехам.

Для уравнения (1) используем шеститочечный двуслойный шаблон по схеме Кранка-Николсон. Перейдем к граничным условиям. В стандартных обозначениях $q_{0,l}^k \approx q_{0,l}(t_k)$, $c_i^k \approx c(t_k, x_i)$, здесь $t_0 = 0$, $x_0 = 0$, $x_n = l$, $\tau = \Delta t$, $h = \Delta x$. Из начальных данных $q_{0,l}^0 = c_i^0 = 0$, $0 \le i \le n$. На каждом слое по времени аппроксимируем $c_x(t_k, 0) \approx [-3c_0^k + 4c_1^k - c_2^k]/2h$. Аналогичные выкладки при x = l в изложении опускаем. Заменив производную по времени конечной разностью $(q_0^k - q_0^{k-1})/\tau = (c_0^k - c_0^{k-1})/(g\tau)$, находим $c_0^k = f_0(c_1^k, c_2^k)$ как положительный корень квадратного уравнения. Значения c_1^k , c_2^k предварительно подсчитываются по явной схеме. С текущими значениями c_0^k , c_n^k решаем методом прогонки трехдиагональную систему линейных уравнений и находим новые приближения c_1^k, c_2^k (и остальные значения $c_i^k, 3 \le i \le n-1$). Снова решаем квадратное уравнение относительно c_0^k и повторяем вычисления до установления (обычно 2-3 итерации). Затем переходим к следующему слою по времени.

Замечание. Можно следовать схеме "предиктор-корректор". Аппроксимируем

$$c_x(t_k, 0) \approx [-3c_0^k + 4c_1^k - c_2^k]/2h \equiv f_0(c_0^k, c_1^k, c_2^k).$$

Вычисляем предварительные значения

$$\begin{split} \tilde{q}_0^{k+1} &= q_0^k + \tau \left\lfloor P - b(q_0^k)^2 + Df_0(c_0^k, c_1^k, c_2^k) \right\rfloor, \\ \tilde{c}_0^{k+1} &\equiv g \tilde{q}_0^{k+1}, \end{split}$$

а затем уточняем, используя среднеарифметический наклон:

$$\begin{split} q_0^{k+1} &= q_0^k + \frac{\tau}{2} \Big[\Big\{ P - b(q_0^k)^2 + Df_0(c_0^k, c_1^k, c_2^k) \Big\} \\ &+ \Big\{ P - b(\tilde{q}_0^{k+1})^2 + Df_0(\tilde{c}_0^{k+1}, c_1^k, c_2^k) \Big\} \Big], \\ &c_0^{k+1} \equiv g q_0^{k+1}. \end{split}$$

Во второй фигурной скобке вместо c_1^k, c_2^k целесообразно использовать значения на слое k + 1, подсчитанные по явной схеме. При текущих c_0^{k+1}, c_n^{k+1} прогонкой находим оставшиеся $c_i^{k+1}, 1 \le i \le n-1$. Формально переобозначаем $c_i^{k+1} \to c_i^k$ и повторяем вычисления несколько раз до установления значений c_0^{k+1}, c_n^{k+1} .

Правильность счета контролировалась выходом распределения c(t, x) на линейный стационар при соблюдении материальных балансов:

$$\int_{0}^{l} c(t, x) dx = -\int_{0}^{t} Dc_{x}(t, 0) dt + \int_{0}^{t} Dc_{x}(t, l) dt,$$
$$q_{l}(t) = \int_{0}^{t} J_{l}(t) dt - \int_{0}^{t} Dc_{x}(t, l) dt.$$
(4)

Журнал технической физики, 2010, том 80, вып. 3

Для второго этапа $(t \in [t_*, t^*])$ построения аналогичны. Численные эксперименты проводились в широком диапазоне: D от 10^{-9} до 10^{-3} cm²/s; b от 10^{-20} до 10^{-5} cm²/s; g от 10^{-3} до 10^{6} 1/cm; s от 10^{-10} до 10^{-2} ; \bar{p}_0 от 0.1 до 10 Torr; $\mu = 1.46 \cdot 10^{21}$ 1/cm²sTorr. Толщина l варьировалась в пределах $2 \cdot 10^{-2} - 2 \cdot 10^{-1}$ сm, что соответствует экспериментальной практике. Из-за разброса порядков величин проводилось масштабирование. "Внутренние" параметры D, b, g, s ("внешние" l, \bar{p}_0 , \bar{p}_0^+ задаются), порождающие кривые проницаемости, "забывались" и восстанавливались по излагаемой ниже методике. Затем анализировались качественные возможности алгоритма идентификации.

Вырожденные модели

и граничными условиями

Наряду с задачей (1)-(3), которую будем обозначать I, рассмотрим еще две. Задачу, в котором граничные условия (2), (3) заменены линейными

$$c_0(t) \equiv c(t, 0) = \tilde{c}_0 = \text{const} > 0, \quad c_l(t) \equiv c(t, l) = 0,$$
(5)

обозначаем II. Простейшая модель II не учитывает физико-химических процессов на поверхности, диффузия — единственный лимитирующий фактор. Плотность выходного потока атомов водорода определяется как $J_{\rm II}(t) = -Dc_x(t, l)$. Решение c(t, x) понимается как обобщенное из-за несогласованности краевых условий при $t \to +0$. Для t > 0 обычно пользуются представлением c(t, x) рядом Фурье. Примем \tilde{c}_0 равной установившейся концентрации \bar{c}_0 в задаче I. Это соответствует ситуации, когда поверхностные процессы значительно быстрее диффузии. Формально задача II — первого рода, но при

$$\tilde{c}_0 = \bar{c}_0 = g \sqrt{b^{-1}(P - \bar{J}_{\rm I})}$$

(см. (6)) она косвенно связана с нелинейной задачей І. Рассмотренную в [10] модель с объемной десорбцией

$$P - \tilde{b}c_0^2(t) = -D \frac{\partial c}{\partial x}\Big|_{x=0}, \qquad \tilde{b}c_l^2(t) = -D \frac{\partial c}{\partial x}\Big|_{x=l}$$
$$J_{\text{III}} \equiv \tilde{b}c_l^2(t), \qquad [\tilde{b}] = \frac{cm^4}{s}$$

обозначим III. Поскольку в модели I $J_{0,l} \equiv bq_{0,l}^2 = bg^{-2}c_{0,l}^2$, то переход I \rightarrow III понимаем в следующем смысле: накопление на поверхности несущественно и $\tilde{b} = b/g^2$. Причина введения моделей II, III в том, что варьирование параметров I в указанных широких пределах может приводить к вырождению. Переход I \rightarrow II(III) сопровождается ростом некорректности обратной задачи оценивания значений *s*, *g*, *b*.

Равновесие и стационарное состояние

Равновесная пара (\bar{p}, \bar{c}) определяется приравниванием к нулю производных:

$$\mu s \bar{p} = b \bar{q}^2, \qquad \bar{c} = g \bar{q} \Rightarrow \bar{c} = \gamma \sqrt{\bar{p}}, \qquad \gamma \equiv g \sqrt{\mu s b^{-1}}$$

Тем самым модель соответствует эксперименту в области $\bar{c} \sim \sqrt{\bar{p}}$. Определение коэффициента равновесной растворимости γ является более простой задачей. Когда в эксперименте насыщения—дегазации пластины нельзя пренебречь поверхностной концентрацией, необходима следующая корректировка. Без ограничения общности поверхности единичны, торцами пренебрегаем. Количество атомов водорода после насыщения численно равно $\bar{c}l + 2\bar{q} = (gl+2)\bar{q}$ — известное число Q после дегазации. Тогда из $\mu s \bar{p} = b \bar{q}^2$ после подстановки $\bar{q} = Q/(gl+2)$ определяем комплекс

$$\tilde{\gamma} = (gl+2)\sqrt{\mu s/b}, \qquad Q = \tilde{\gamma}\sqrt{\bar{p}}.$$

При $gl \gg 1$ можно считать, что в равновесии поверхностная концентрация несущественна на фоне объемной и $\tilde{\gamma} = l\gamma$. Когда известен коэффициент γ или $\tilde{\gamma}$, исключается один из параметров поверхностных процессов. Но другие эксперименты характеризуются своими погрешностями и требуют затрат. В дальнейшем постараемся обойтись без предварительного определения γ или $\tilde{\gamma}$.

Стационарное распределение атомов водорода линейно. В модели *I*:

$$\dot{q}_{0,l} = 0, \qquad c_t = 0 \Rightarrow c(t_*, x) = -D^{-1}\bar{J}x + \bar{c}_0,$$

 $\bar{c}_0 = g\sqrt{b^{-1}(P - \bar{J})}.$ (6)

Из $\bar{J} = b\bar{q}_l^2$ выражаем стационарное значение $\bar{c}_l = g\bar{q}_l$ и приравниваем к $c(t_*, l)$:

$$\sqrt{\bar{J}} - \sqrt{P - \bar{J}} + \bar{J}l\sqrt{\bar{b}}(gD)^{-1} = 0$$
 $(P \equiv \mu s \bar{p}_0).$ (7)

Из двух таких уравнений, соответствующих значениям давления \bar{p}_0 и \bar{p}_0^+ , исключаем μs :

$$\left(\frac{\bar{J}_{+}^{2}}{\bar{p}_{0}^{+}} - \frac{\bar{J}^{2}}{\bar{p}_{0}}\right) z^{2} + 2\left(\frac{\bar{J}_{+}^{3/2}}{\bar{p}_{0}^{+}} - \frac{\bar{J}^{3/2}}{\bar{p}_{0}}\right) z + 2\left(\frac{\bar{J}_{+}}{\bar{p}_{0}^{+}} - \frac{\bar{J}}{\bar{p}_{0}}\right) = 0, \quad z \equiv \frac{l\sqrt{\bar{b}}}{gD} \equiv \frac{l\sqrt{\bar{b}}}{D}.$$
 (8)

Корни разного знака, комплекс параметров *z* определяется однозначно. Затем из уравнения (7) находим *s*. Целесообразно предварительно уравнение (8) разделить на \bar{J} и перейти к безразмерной переменной $z\sqrt{J}$. В модели III $\sqrt{J} - \sqrt{P - J} + \bar{J}\tilde{b}^{1/2}lD^{-1} = 0$ и по информации { $\bar{p}_0, \bar{p}_0^+, \bar{J}, \bar{J}_+$ } однозначно определяется *s* и $\tilde{b}^{1/2}lD^{-1}$. С учетом $\tilde{b} = b/g^2$ стационарные уровни \bar{J} в моделях I и III одинаковы при фиксированных *P*. В граничных условиях (2) можно перейти к параметру $\tilde{b} = b/g^2$, имеющему вследствие $J_{0,l} \equiv bq_{0,l}^2 = bg^{-2}c_{0,l}^2$ смысл объемного коэффициента десорбции. При фиксированных D, *s* и $P \gg \bar{J}$ из соотношения (7) получаем $\lg \bar{J} = -(\lg \tilde{b})/2 + \text{const}$, т.е. линейную зависимость в логарифмических координатах.

Время запаздывания

Рассмотрим функцию S(t), равную интегралу на отрезке времени [0, t] от плотности десорбции $J(\tau)$. Это количество атомов водорода, десорбировавшихся с единичной площадки при x = l за время t. График этой выпуклой функции имеет наклонную асимптоту. Точка пересечения асимптоты с осью t называется временем запаздывания t_0 . Уравнение касательной к графику S(t) в точке (t_*, S_*) : $S = S_* + J(t_*)(t - t_*)$ ($\dot{S} = J$). Следовательно, значение $t_0 \in R_+$ весьма точно вычисляется как $t_0 = t_* - S_*/\bar{J}$, $S_* \equiv S(t_*)$. Здесь t_* — время установления выходного потока: $J(t) \approx \bar{J} = \text{const}$, $t \ge t_*$. Для задачи II ($c_0(t) = \tilde{c}_0, c_l(t) = 0, J_{\text{II}} = -Dc_x(t, l)$) имеется явное выражение $t_0 = l^2/6D$ [2]. Важно, что t_0^{II} не зависит от \tilde{c}_0 .

Замечание. Обычно считается $c_0(t) = \bar{c}$, где $\bar{c} \sim \sqrt{\bar{p}_0}$ — равновесная с давлением \bar{p}_0 концентрация. В контексте I полагаем $\tilde{c}_0 = \bar{c}_0$: быстро устанавливаются поверхностные процессы и с большим запасом лимитирует диффузия. Поскольку в равновесии $P = b\bar{q}^2$, а в стационаре $P - b\bar{q}^2_0 = \bar{J}$, то $\bar{c} > \bar{c}_0$. Кроме того, $\bar{J} = b\bar{q}^2_l \Rightarrow \bar{c}^2 = \bar{c}^2_0 + \bar{c}^2_l$, $\bar{J} = J_{\rm I} < J_{\rm II}$. Когда поток атомов H на входную поверхность значительно превосходит пропускную способность мембраны $(P \gg \bar{J})$, имеем $\bar{c}_0 \approx \bar{c}$. Наконец, из формулы (6) следует $\bar{c}_0 = \bar{c}_l + \bar{J}lD^{-1}$, и если $\bar{c}_l \ll \bar{c}_0$, то $\bar{c}_0 \approx \bar{J}lD^{-1}$ (в задаче II $\tilde{c}_0 = \bar{J}_{\rm II}lD^{-1}$).

Будем говорить, что модель I вырождается в модель II (I \rightarrow II), если при заданных *D*, *b*, *s*, *g* и $\tilde{c}_0 = \bar{c}_0 = g \sqrt{b^{-1}(P-\bar{J})}$ ($\bar{J} = \bar{J}_I$) плотности десорбции $J_I(t) \equiv J(t) = bq_l^2(t)$ и $J_{II}(t) = -Dc_x(t, l)$ равны как функции времени. Совпадение подразумевается с погрешностью много меньшей экспериментальной.

Аналогичным образом интерпретируем обозначения III \rightarrow II, I \rightarrow III. Напомним, что в силу $\tilde{b} = b/g^2$ значения \bar{c}_0 и \bar{J} в модели I такие же, как и в III.

Критерии вырождения

Так как функция S(t) строго выпукла, но известна приближенно, то в качестве критерия вырождения $I \rightarrow II$ можно взять соотношения $t_0^I \approx t_0^{II} = l^2/6D$ и $\bar{c}_0 \approx \bar{J}lD^{-1}$ ($\bar{c}_l \ll \bar{c}_0$). Они должны выполняться совместно. Сравним проникающие потоки. Поскольку в задаче I граничные концентрации равны { \bar{c}_0, \bar{c}_l }, а в II — { $\bar{c}_0, 0$ }, то $\bar{J}_I < \bar{J}_{II}$. Значение

$$\bar{J}_{\rm II} = \sqrt{\mu s \, \bar{p}_0 - \bar{J}_{\rm I}/z}$$

определяется из

$$\bar{c}_0 = g \sqrt{b^{-1}(P - \bar{J}_{\rm I})} = \bar{J}_{\rm II} l D^{-1}$$

Кроме того:

$$\begin{split} \bar{J}_{\mathrm{I}} &= b\bar{q}_{l}^{2} \Rightarrow \bar{c}_{l} = g\sqrt{b^{-1}\bar{J}} \Rightarrow \frac{\bar{c}_{0}}{\bar{c}_{l}} = \sqrt{\varsigma - 1} > 1, \\ \varsigma &\equiv P\bar{J}_{\mathrm{I}}^{-1} \qquad (2\bar{J}_{\mathrm{I}} < P). \end{split}$$

Параметр ς дополнительно характеризует зону I \rightarrow II в смысле $\bar{c}_l \ll \bar{c}_0 \sim \varsigma \gg 1$.

Приведем комментарии качественного характера. В модели І $\bar{c}_l \neq 0$ и при некоторых значениях параметров (в основном за счет $c_l = gq_l$) поверхностная концентрация \bar{q}_l достаточно большая. При фиксированных D, g определяющим является произведение *bP* — чем оно меньше, тем "дальше" модели I и II. Если значительно уменьшить падающий на входную поверхность поток $P = \mu s \bar{p}_0$, то проникающий поток \bar{J} будет очень мал и $\bar{c}_l \approx \bar{c}_0$. Если уменьшить b, то на выходе десорбция будет слабой, что способствует росту \bar{c}_{l} ($c_{l}(t)$ монотонно растет до уровня \bar{c}_{l}). Наоборот, если значение b относительно велико, то на выходной стороне активная десорбция понижает концентрацию \bar{c}_l и в пределе получаем задачу II с $c_1(t) = 0$. Рост *bP* влечет уменьшение времени установления концентрации: $c_0(0) = 0 \rightarrow \bar{c}_0$. Когда модели перекрываются (I \rightarrow II), большие (но не слишком) вариации s, b практически не влияют на время запаздывания $t_0 \approx l^2/6D$. В этом и проявляется некорректность обратной задачи. Подчеркнем, что вариации $b, s \bar{p}_0$, сохраняющие их произведение, не изменяют t_0^1 .

Приведенные рассуждения дают основание наряду с временем запаздывания ввести в рассмотрение диффузионное и поверхностное время: $\xi = l^2/2D$ и $\eta = 2/\sqrt{bP}$. Если $\eta \gg \xi$, то лимитирующим фактором являются поверхностные процессы. При $\eta \ll \xi$ лимитирует диффузия (вырождение I \rightarrow II). Разность $\tilde{t}_0 = t_0 - t_0^{\text{II}} (t_0^{\text{II}} = \xi/3)$ показывает, насколько поверхностные процессы увеличивают запаздывание. Следовательно, \tilde{t}_0 и η должны быть связаны монотонной зависимостью. Удобнее сравнивать относительные величины: $\delta t_0 = (t_0 - t_0^{\text{II}})/\xi$ и η/ξ . Коэффициент быстрого растворения *g* является связующим между поверхностью и объемом и играет особую роль.

Замечание. Помимо качественных рассуждений и соображений размерности ($\xi \sim l^2/D$, $\eta \sim 1/\sqrt{bP}$) множителей. Рассмотрим приведем обоснование стационарное состояние в II: $c_0(t) = \tilde{c}_0, c_l(t) = 0,$ $c(t, x) = (l - x)\tilde{c}_0/l, t \ge t_*.$ Обозначим через $\bar{v}(x)$ "среднюю скорость стационарного переноса" сечении $x \in (0, l)$. Тогда $\bar{J} = \bar{v}(x)c(t_*, x) =$ $dt = dx/\bar{v}(x) = (l-x)dx/D$ $= D\tilde{c}_0/l$, И после интегрирования на [0, l] получаем характеристическое время $\tau_* = l^2/2D$. Подобное соотношение возникает и при анализе диффузии в терминах теории вероятностей [11, гл. V]. Обратно. Пусть диффузия медленная на фоне поверхностных процессов. Рассмотрим установление $\dot{q}_0 = P - bq_0^2$, $q_0(0) = 0 \rightarrow$ $\rightarrow \bar{q}_0 = \sqrt{P/b}$ $(Dc_x(t, 0) \approx 0).$ Проинтегрировав уравнение, имеем $\sqrt{P} - \sqrt{b}q_0(t) = \exp\{-2\sqrt{bPt}\} \times (\sqrt{P} + \sqrt{b}q_0(t)), 1 - \sqrt{b}P^{-1/2}q_0(t) \le 2\exp\{-2\sqrt{bPt}\}.$ При $t = \tau_* = N/\sqrt{bP}$, N = 2, левая часть неравенства, характеризующая отклонение от установления на поверхности, меньше 3.7%.

Выясним механизм влияния *g* на свойства решений задачи I. Обозначим

$$\Theta = \bar{J}^{-1} \int_{0}^{t_{*}} \left[F_{0}(\tau) - \bar{J} \right] d\tau > 0, \qquad F_{0}(t) \equiv -D \left. \frac{\partial c}{\partial x} \right|_{0}$$

Поясним смысл введения всплеск-времени Θ (по аналогии с диффузионным и поверхностным временем). На начальном этапе входной поток $F_0(t)$ испытывает всплеск и затем $F_0 \rightarrow \overline{J}$. Продолжительность всплеска относительно невелика ($\ll t_*$), но интеграл может оказаться существенной величиной. Когда модель I вырождается в II, значение Θ (как и t_0) можно вычислить аналитически: $\Theta = \Theta^{II} = l^2/3D = 2t_0^{II}$. Это следует из $\tilde{c}_0 = \bar{c}_0 = \overline{J}l/D$, $t_0 = l^2/6D$, $J = -Dc_x(t, l)$ и материального баланса при $t = t_*$:

$$\int_{0}^{l} \bar{J}D^{-1}x dx = \int_{0}^{t_*} F_0 dt - \int_{0}^{t_*} J dt,$$
$$\frac{\bar{J}l^2}{2D} = [\Theta + t_*]\bar{J} - S_* \Rightarrow 3t_0 = \Theta + t_* - S_*\bar{J}^{-1}$$
$$= \Theta + t_0 \Rightarrow \Theta = 2t_0.$$

Здесь в выкладках у величин J, S_*, t_*, t_0, Θ подразумевается индекс II.

Остановимся на свойствах величины $\Theta = \Theta^{I}$, характеризующей жесткость задачи переноса. Разделим Θ на два слагаемых: $\Theta = \Theta^{II} + \tilde{\Theta}$. При $t = t_*$ из баланса (4) с учетом $-Dc_x(t, 0) = [F_0(t) - \bar{J}] + \bar{J}$, представления (6) и условия $Dc_x(t, l) = -J(t) - \dot{q}_l(t)$ имеем:

$$\bar{J}\Theta + \bar{J}t_* - S_* - \bar{q}_l = \int_0^l c(t_*, x)dx$$
$$= \bar{c}_0 l - \frac{\bar{J}l^2}{2D} = \bar{c}_0 l - \bar{J}\xi$$

Здесь S_* — интеграл от $J(\tau) = bq_l^2(\tau), \tau \in [0, t_*]$. Подставив выражения $\bar{c}_0 = \bar{c}_l + \bar{J}l/D, \ \bar{c}_l = g\bar{q}_l = g\sqrt{J/b},$ после деления на \bar{J} для запаздывания $t_0 = t_* - S_*/\bar{J}$ получаем

$$t_0 + \Theta = \frac{l^2}{2D} + \frac{gl+1}{\bar{I}\sqrt{b}},$$
$$I \equiv \sqrt{J} \Rightarrow \tilde{t}_0 + \tilde{\Theta} = (g^{-1} + l)[\bar{J}\tilde{b}]^{-1/2}.$$
(9)

Аналогично для модели III: $\tilde{t}_0 + \tilde{\Theta} = l[J\tilde{b}]^{-1/2}$. Согласно (9), сумма времен всплеска и запаздывания представляется двумя слагаемыми. Первое — это диффузионное время ξ , а второе определяется временем $1/\sqrt{bJ}$ и соизмеримостью поверхности с объемом (значением gl). Величина J явно не выражается через параметры модели, поэтому выбрано $\eta = 2/\sqrt{bP}$, что формально соответствует J = P/4 (между $P \gg J$ и $P \sim J$).

Критерии вырождения $\xi \ll \eta$, $\xi \gg \eta$ асимптотические. Как указать "шкалу соизмеримости" в конкретной задаче, когда диапазон допустимых значений параметров относительно мал (не 5–10 порядков)? Запишем соотношение (9) в форме

$$t_0 + \Theta = \xi + A\eta, \qquad A \equiv rac{gl+1}{2}\sqrt{\xi}, \qquad \xi = P ar{J}^{-1}.$$

Переход I \rightarrow II характеризуется $A\eta \rightarrow 0$ ($A\eta \ll \xi$). Для оценки влияния поверхностных процессов на водородопроницаемость необходимо исследовать окрестность соизмеримости $A\eta \sim \xi$. При наличии экспериментальной кривой значение ξ известно.

Основной вариант

Рассмотрим условие $P \gg \overline{J}$, когда падающий на вход поток значительно превосходит пропускную способность материала. Уменьшение \overline{p}_0 увеличивает время эксперимента и снижает точность измерений. Поэтому понятно стремление увеличить *P*. Но желательно не доводить дело до $\sqrt{P} \gg \overline{I}$. Плата — смещение общих трудностей обратной задачи в сторону математики (растет некорректность задачи оценивания *s*, *b*, *g*).

Подчеркнем, что уравнение стационарного состояния (7) (\bar{J} надежно регистрируется) значительно точнее интегрального соотношения (9), которое определяется переходными процессами. Поэтому для качественного анализа (9) допустимо упрощение (7) при $\sqrt{P} \gg \bar{I}$: $\sqrt{P} = J\tilde{b}^{1/2}lD^{-1} \Rightarrow \tilde{b}^{1/2}\sqrt{P} = Jl\tilde{b}D^{-1}$. Использовав отсюда выражение для $I\tilde{b}^{1/2}$, получим

$$\sigma \equiv \tilde{t}_0 + \tilde{\Theta} = \left(v + \frac{1}{v}\right)\sqrt{\xi\eta},$$
$$v \equiv \sqrt{gl} \Rightarrow \delta\sigma = \frac{\sigma}{\xi} = \delta\tilde{t}_0 + \delta\tilde{\Theta} = \left(v + \frac{1}{v}\right)\sqrt{\frac{\eta}{\xi}}, \quad (10)$$

где $\delta t_0 = \tilde{t}_0/\xi$, $\delta \Theta = \tilde{\Theta}/\xi$, $\tilde{t}_0 = t_0 - t_0^{\text{II}}$, $t_0^{\text{II}} = l^2/6D$, $\tilde{\Theta} = \Theta - \Theta^{\text{II}} = \Theta - 2t_0^{\text{II}}$.

Отсюда ясно, что величины σ и $\delta\sigma$, характеризующие отклонение модели I от II по входному всплеску и запаздыванию, зависят лишь от седлового параметра gи соотношения времен $\xi = l^2/2D$, $\eta = 2/\sqrt{bP}$ (σ — от среднего геометрического времени, $\delta\sigma$ — от их отношения). С ростом v (при сохранении значения $\tilde{b} = b/g^2$) имеем I \rightarrow II, а при $v \rightarrow +0$ в силу $c_0(t) = gq_0(t)$ ничего не попадает в объем. Выбором l можно влиять на коэффициент усиления (v + 1/v). Для модели III $\sigma = v\sqrt{\xi\eta}$, точка перегиба отсутствует.

Результаты численного моделирования

Рассматривались значения $v \in [10^{-2}, 10^2]$ и по физически оправданным порядкам коэффициента диффузии фиксировался примерный диапазон соизмеримости $\bar{A}\eta/\xi \in [10^{-2}, 10^2]$. Множитель \bar{A} определялся в зависимости от порядков вычисленных значений \bar{J} . Величины $\delta \Theta$ и δt_0 характеризуют "вход" и "выход". При

v	0.01	0.1	1	10	100
$A\eta/\xi$	$3 \cdot 10^{-1} - 10^2$	$3\cdot 10^{-1} {-} 7\cdot 10^{1}$	$10^{-1} - 10^2$	$10^{-1} - 2 \cdot 10^2$	$3 \cdot 10^{-1} - 10^{-2}$

 $P\gg \bar{J}$ знаем качественное поведение их суммы $\delta\sigma$. Желательно иметь информацию о $\delta\Theta$, δt_0 в отдельности.

На рис. 1–4 представлены зависимости \tilde{t}_0 , Θ от $\sqrt{\xi\eta}$ и соответственно δt_0 , $\delta \Theta$ от $\sqrt{\eta/\xi}$ при различных $v \in [10^{-2}, 10^2]$. Для определенности фиксированы значения $\bar{p}_0 = 0.1$, l = 0.01, $D = 10^{-6}$, их вариации не приводят к качественным изменениям графиков. Абсцисса $x = \sqrt{\xi\eta}$ (аналогично для $\sqrt{\xi/\eta}$) дает значение комплекса $bs = 4\xi^2/(x^4\mu\bar{p}_0)$, определяющего время запаздывания $t_0 = t_0^{\rm I}$. Соизмеримость времен $A\eta \sim \xi$ иллюстрируется таблицей.

На рис. 5 демонстрируется почти постоянство "производной входа по выходу" (и "выхода по входу"), т.е. слабая зависимость $\delta t_0/\delta\Theta$ от поверхностного времени. "Управляющим" параметром является в основном g. При переходе через значение v = 1 перегиб происходит только у \tilde{t}_0 , при этом $\tilde{\Theta}$ возрастает монотонно с ростом vдо значения "насыщения" $\tilde{\Theta}^{III}$ (для малых v может

Рис. 1. Зависимость \tilde{t}_0 от времени $\sqrt{\xi \eta}$ (перегиб при v = 1). Здесь и на рис. 2–5, 7: • — +0.01, • — 0.1, * — 1, \Box — 10, \Diamond — 100.

Рис. 2. Зависимость $\tilde{\Theta}$ от времени $\sqrt{\xi \eta}$ (монотонность по v).

Рис. 3. Зависимость δt_0 от $\sqrt{\eta/\xi}$ (перегиб при v = 1).

Рис. 4. Зависимость $\delta \Theta$ от $\sqrt{\eta/\xi}$ (монотонность по v).

Рис. 5. "Производная входа по выходу" — зависимость $\delta \Theta / \delta t_0$ от $\sqrt{\eta/\xi}$.

Рис. 6. Динамика перехода модели I в III с ростом g (--- $g = 10, -\cdot - - 100$); $P = 1.46 \cdot 10^{14}$, I = 0.02, $D = 10^{-6}$.

Рис. 7. Показатель пропускной способности пластины (P/\bar{J}) от $\sqrt{\xi\eta}$.

оказаться $\Theta < 0$). На рис. 6 представлена динамика перехода I \rightarrow III с ростом g. Уменьшение g ведет к вырождению показателя пропускной способности P/Jпластины в линейную зависимость от ξ/η в логарифмических координатах (рис. 7).

Алгоритм определения параметров

По классической кривой проницаемости нельзя однозначно сделать вывод о соизмеримости поверхностных процессов и диффузии. Если взять \bar{J} и $t_0 = t_* - S_*/\bar{J}$ из задачи I и принять в II $D = D_{\rm II} = l^2/6t_0$, $\tilde{c}_0 = \bar{J}l/D_{\rm II}$, то в II получим то же значение \bar{J} . Близкими могут оказаться и переходные процессы. Например, при $g \sim 10^{-2}$, $\tilde{b}P \sim 10^{-7}$, $D_{\rm I} = 10^{-6}$ концентрация \bar{c}_0 больше $l\bar{J}/D_{\rm I}$ почти в 2 раза, $t_0 \approx l^2/2D_{\rm I}$. Однако графики J(t) в моделях I и II (при указанных значениях $D_{\rm II}$ и \tilde{c}_0) совпадают в пределах 5%. Поэтому и предлагается эксперимент с двумя значениями и "стартом" на втором этапе не с нуля, а с достигнутого стационарного состояния.

Вначале продолжим рассуждения в рамках модели II $(\tilde{c}_0 = \bar{c}_0)$. Для второго этапа $(\bar{p}_0 \to \bar{p}_0^+, t \in [t_*, t^*])$ сделаем замену $c_{\Delta}(t, x) = c(t, x) - c(t_*, x)$ и примем t_* за начало отсчета времени. Здесь $c(t_*, x) = \bar{J}D^{-1}(l-x)$, $\bar{J} = \bar{J}_{II}, t_* = t_*^{II}, t^* = t_{II}^*$. Получим ту же краевую задачу для c_{Δ} , только вместо $\bar{c}_0, J_{II}(t)$ будут $\Delta \bar{c}_0 = \bar{c}_0^+ - \bar{c}_0$ и $\Delta J_{II} = J_{II} - \bar{J}_{II} (J_{II} = F_l)$. Новое время запаздывания вычисляем по формуле

$$\Delta t_0 = \Delta t_* - \frac{\Delta S_*}{\Delta \bar{J}_{\rm I}}, \qquad \Delta S_* \equiv \int_0^{\Delta t_*} \Delta J_{\rm II}(\tau) d\tau,$$
$$\Delta t_* \equiv t^* - t_*, \qquad \Delta \bar{J}_{\rm II} \equiv \bar{J}_{\rm II}^+ - \bar{J}_{\rm II}. \qquad (11)$$

В исходном времени интегрирование ведется по $\tau \in [t_*, t^*]$ и Δt_0 определяется длиной отрезка между точкой (t_*, S_*) и точкой пересечения асимптоты для $S_* + \Delta S(t)$ $(t > t_*)$ с горизонтальной прямой $S = S_*$. В модели II $\Delta t_0 = t_0 = l^2/6D$ и не зависит от *b*, *g*, *s*, \bar{p}_0, \bar{p}_0^+ .

Вырожденный случай

Напомним, что *s* и $z = l\sqrt{b}(gD)^{-1} = \tilde{b}^{1/2}lD^{-1}$ известны из анализа стационаров. По известной из эксперимента плотности десорбции $J(t) = bq_l^2(t)$ вычисляем $t_1 = t_* - S_*/\bar{J}$ и $t_2 = \Delta t_* - \Delta S_*/\Delta \bar{J}$, т.е. в (11) вместо $\Delta J_{\rm II}(t)$ используем $\Delta J(t) = J(t) - \bar{J}, \Delta \bar{J} = \bar{J}^+ - \bar{J}$. Если t_i совпадают с высокой точностью, то обоснованно полагаем, что эксперимент находится в зоне I \rightarrow II. Ведь в модели I на втором этапе изменилось не только входное давление, но и начальные данные. Хотя теоретически времена запаздывания t_i могут совпасть и в модели I при специально подобранных значениях \bar{p}_0 , \bar{p}_0^+ . Из $t_i = l^2/6D$ находим оценку коэффициента диффузии D. Лучше брать t_2 , второй этап "ближе" к вырождению I \rightarrow II. Соотношение (6) дает значение комплекса g/\sqrt{b} .

Однозначно определяется коэффициент объемной десорбции $\tilde{b} = b/g^2$. Для разделения параметров g, b требуется дополнительная информация, например, значение равновесного коэффициента γ ($\tilde{\gamma}$). Если $t_1 \approx t_2$, но $P \sim J$ и (или) $P^+ \sim J_+$, то можно перейти к нелинейной модели, считая D, \tilde{b} подлежащими уточнению.

Нелинейная модель

Пусть вычисленные t_i существенно различны в масштабе времени установления t_* . Обратную задачу решаем последовательно в соответствии с усложнением модели: II \rightarrow III \rightarrow I. Известны значения t_i , s, $z = \tilde{b}^{1/2} l D^{-1}$, $P = \mu s \bar{p}_0$ и грубые оценки D, \tilde{b} после обработки измерений J(t) по линейной модели II.

1. В рамках нелинейной модели III справедливо соотношение

$$t_{0} + \Theta = \xi + \frac{l}{[J\tilde{b}]^{1/2}} = \xi \left(1 + \frac{2}{z\bar{J}^{1/2}}\right),$$

$$t_{0} = t_{1} = t_{*} - \frac{S_{*}}{\bar{J}}, \qquad \Theta = \Theta^{\mathrm{III}}(\tilde{b}, D).$$
(12)

Решаем краевую задачу III с оценками D, \tilde{b} и вычисляем приближение $\Theta^{(1)}$. Заменив в (12) неизвестную величину Θ на $\Theta^{(1)}$, находим $\xi^{(1)}$ и $D^{(1)} = l^2/\xi^{(1)}$, $\tilde{b}^{(1)} = (D^{(1)}z/l)^2$. Повторяем итерации до установления, ориентируясь на невязку $|\bar{J} - \bar{J}^{(i)}|$.

Замечание. Чем больше диффузионное время $\xi = l^2/2D$, тем больше величина Θ ($\Theta^I > \Theta^{II} = 2\xi/3$), т.е. формально значения Θ не ограничены. Теперь, образно говоря, фиксируем некоторую окрестность модели II. При стремлении I \rightarrow II растет всплеск F_0 , установление $c_0(t) \rightarrow \bar{c}_0$ происходит все быстрее. Но интегрально F_0 ограничен. Под интегралом в Θ вычитается $\bar{J}_I < \bar{J}_{II}$ и затем результат делится на \bar{J}_I . Следовательно, имеется механизм стабилизации значения Θ . Поэтому приближение $\Theta \approx l^2/3D = 2\xi/3$ приемлемо даже когда модель I уже существенно отличается от II. Например, для $D = 10^{-6}$, $b = 10^{-16}$, $g = 10^{-2}$, l = 0.02, $s = 10^{-3}$, $\bar{p}_0 = 1$ получаем $t_0^I = 107.7$, $t_0^{II} = l^2/6D = 66.7$. Вместе с тем $\Theta^I = 133.86$, $\Theta^{II} = l^2/3D = 133.86$. Таким образом, итерации в (12) можно начать не с численного приближения $\Theta^{(1)}$, а полагая $\Theta^{(1)} = 2\xi/3$.

2. Переходим к модели I, только когда существенна разница в переходном процессе $J(t) - J_{III}(t)$ (поскольку $\bar{J}_{\rm I} = \bar{J}_{\rm III}$, см. рис. 6). Известны s, $\tilde{b} = b/g^2$, $D = \tilde{b}^{1/2}l/z$. Осталось определить параметр g или b. Выбрав $\Theta^{(1)} = \Theta^{\rm III}$, $\Theta^{(1)} = 2\xi/3$ или даже $\Theta^{(1)} = 0$ (когда очень велика разница между $J_{\rm III}$ и $J, g \ll 1$), можно организовать итерационный процесс на основе соотношения (9). Но в конкретной задаче сразу ясно (см. рис. 6), в каком направлении нужно изменять значение g.

Усреднение

Оценить аналитически влияние погрешностей измерений и вычислений не представляется реальным. Некорректность обратной задачи для параметров, связанных с поверхностью, условно характеризуется неравенством $P \gg \overline{J}$. Целесообразно дополнительно использовать аналог соотношения (9) для отрезка времени $[t_*, t^*]$.

Обратимся ко второму этапу эксперимента: $\bar{p}_0 \to \bar{p}_0^+$, $t \in [t_*, t^*]$. Сделаем замену:

$$c_{\Delta}(t,x) = c(t,x) - c(t_*,x), \quad c(t_*,x) = \bar{c}_0 - D^{-1}\bar{J}x,$$
$$\frac{\partial c_{\Delta}}{\partial t} = D \frac{\partial^2 c_{\Delta}}{\partial x^2}, \qquad t > t_*,$$
$$c_{\Delta}(t_*,x) = 0, \quad -D \frac{\partial c_{\Delta}}{\partial x}\Big|_{x=0,l} = F_{0,l}(t) - \bar{J} \equiv \Delta F_{0,l}(t),$$
$$F_{0,l}(t) = -D \frac{\partial c}{\partial x}\Big|_{x=0,l}.$$

Для нового времени запаздывания $\Delta t_0 = \Delta t_* - \Delta S_* / \Delta \bar{J}$ получаем выражение

$$\Delta t_0 = \frac{l\Delta \bar{c}_0}{\Delta \bar{J}} - \frac{l^2}{2D} + \frac{\Delta \bar{I}}{\Delta \bar{J}\sqrt{b}} - \Delta \Theta$$
$$= \frac{l^2}{2D} + \frac{\Delta \bar{I}}{\Delta \bar{J}\sqrt{b}} [gl+1] - \Delta \Theta, \qquad (13)$$

где $\Delta \bar{c}_0 = \bar{c}_0^+ - \bar{c}_0$, $\Delta \bar{J} = \bar{J}^+ - \bar{J}$, $\Delta \bar{I} = \bar{I}^+ - \bar{I}$, $I = \sqrt{J}$, a ΔS_* , $\Delta \Theta$ — интегралы от $J(t) - \bar{J}$, $[F_0(t) - \bar{J}^+]/\Delta \bar{J}$, $t \in [t_*, t^*]$.

Выражение для Δt_0 можно получить и из баланса

$$\int_{0}^{l} [c(t^{*}, x) - c(t_{*}, x)]dx$$

$$= -\int_{t_{*}}^{t^{*}} Dc_{x}(t, 0)dt + \int_{t_{*}}^{t^{*}} Dc_{x}(t, l)dt,$$

$$-Dc_{x}|_{0} = [F_{0} - \bar{J}^{+}] + \bar{J}^{+}, \qquad Dc_{x}|_{l} = -[J - \bar{J}] - \bar{J} - \dot{q}_{l},$$

$$q_l=\sqrt{J/b}, \qquad c_l=gq_l, \qquad ar c_0=ar c_l+ar Jl/D.$$

В переменных $x_1 = l^2/(2D)$, $x_2 = (gl+1)/(\bar{l}\sqrt{b})$ система (9), (13) перепишется в форме

$$t_0 = x_1 + x_2 - \Theta, \qquad \Delta t_0 = x_1 + a x_2 - \Delta \Theta,$$

 $a \equiv \bar{I} [\bar{I} + \bar{I}^+]^{-1} < 2^{-1}.$ (14)

Переменные x_i входят в уравнение линейно, если формально зафиксировать Θ и $\Delta\Theta$, которые неявно зависят от $D, b, g, s, l, \bar{p}_0, \bar{p}_0^+$. Система (14) позволяет локальной вариацией решения задачи добиться баланса невязки на отрезках времени $[0, t_*], [t_*, t^*]$.

Заключение

Параметры поверхностных и диффузионных процессов определяются в одном эксперименте. Это представляется более корректным, чем использование "табличных данных" по каждому коэффициенту из различных источников. К тому же свойства поверхности существенно зависят от условий производства материала. Информация на входе "черного ящика" (о концентрации или потоке при x = 0) существенно улучшила бы обусловленность обратной задачи идентификации. Желательно, чтобы скорости диффузии и поверхностных процессов были соизмеримы по порядкам ($[l\sqrt{bP}] = [\tilde{b}^{1/2}\sqrt{P}] = [D/l] = \text{сm/s}$). Следовательно, речь идет о невысоких значениях температуры: химические процессы активируются с ростом T существенно быстрее диффузии. В прикладном плане модель Iнацелена на исследование тонких пленок или стенок, когда уровни концентрации малы и требуется оценить медленное (но на значительном интервале времени) накопление водорода или его изотопов с внешней стороны.

В алгоритме используются только интегральные операторы обработки информации J(t), что нацелено на помехоустойчивость оценивания. Рассмотренный диапазон порядков величин слишком велик для однозначных рекомендаций. В конкретном случае следует переходить к безразмерным переменным $x_i: D = \overline{D}x_1, b = \overline{b}x_2, s = \overline{s}x_3, g = \overline{g}x_4$ (чертой фиксируются характерные порядки). На заключительном этапе целесообразно дополнительно применить метод наименьших квадратов (как правило, он лишь локально сходится).

Работа выполнена при поддержке РФФИ (грант 09-01-00439).

Список литературы

- Водород в металлах / Под ред. Г. Алефельда и В. Фёлькля. М.: Мир, 1981. Т. 1, 2.
- [2] Кунин Л.Л., Головин А.И., Суровой Ю.И., Хохрин В.М. Проблемы дегазации металлов. М.: Наука, 1972.
- [3] Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979.
- [4] Габис И.Е., Компаниец Т.Н., Курдюмов А.А. // Взаимодействие водорода с металлами / Под ред. А.П. Захарова. М.: Наука, 1987. С. 177–206.
- [5] Indeitsev D.A., Semenov B.N. // Acta Mechanica. 2008.
 Vol. 195. P. 295–304.
- [6] Заика Ю.В. // ЖТФ. 2000. Т. 70. Вып. 5. С. 32-40.
- [7] Zaika Yu.V. // Int. J. of Mathematics and Mathematical Sciences. 2004. Vol. 4. P. 195–216.
- [8] Заика Ю.В., Родченкова Н.И. // Матем. моделирование. 2008. Т. 19. № 11. С. 67–79.
- [9] Заика Ю.В. // ЖВММФ. 1996. Т. 34. № 12. С. 108–120.
- [10] Zaika Yu.V., Bormatova E.P. // NATO Science for Peace and Security Series — C. Carbon Nanomaterials in Clean-Energy Hydrogen Systems. Springer, 2008. P. 403–415.
- [11] Зельдович Я.Б., Мышкис А.Д. Элементы математической физики. М.: Наука, 1973.