07

О степенном характере зависимости скорости пластической деформации от давления при нагружении кристаллов интенсивными ударными волнами

© Г.А. Малыгин¹, С.Л. Огарков², А.В. Андрияш²

¹Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ²Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, Москва, Россия E-mail: malygin.ga@mail.ioffe.ru

(Поступила в Редакцию 28 августа 2012 г. В окончательной редакции 26 сентября 2012 г.)

При деформации металлических кристаллов ударными волнами большой интенсивности установлено, что скорость пластической деформации $\dot{\varepsilon}$ и давление в волне *P* связаны эмпирическим соотношением $\dot{\varepsilon} \sim P^4$ (закон Свигла–Грэди). Выполненный дислокационно-кинетический анализ механизма возникновения этого соотношения показал, что его степенной характер обусловлен степенной зависимостью от давления плотности генерируемых на фронте волны геометрически необходимых дислокаций $\rho \sim P^3$. В сочетании со скоростью вязкого движения дислокаций, линейно изменяющейся с давлением $(u \sim P)$, это приводит, согласно формуле Орована для скорости пластической деформации $\dot{\varepsilon} = b\rho u$ (где b — вектор Бюргерса), к наблюдаемому в эксперименте соотношению $\dot{\varepsilon} \sim P^4$ для широкого круга материалов с различным типом кристаллической решетки. В рамках единого дислокационно-кинетического подхода теоретически продемонстрировано, что зависимость давления (напряжения течения) от скорости пластической деформации в широком диапазоне ее изменения $10^{-4} - 10^{10} s^{-1}$ отражает три последовательно развивающихся процесса: термоактивированного движения дислокаций, их вязкого торможения и генерации геометрически необходимых дислокаций на фронте ударной волны.

1. Введение

При деформировании металлических кристаллов с ГЦК-решеткой ударными волнами большой интенсивности найдено, что скорость пластической деформации є и давление (напряжение) в волне Р связаны эмпирическим соотношением $\dot{\varepsilon} = K_n P^4$, получившим название закона Свигла-Грэди (СГ) [1-5], где К_р — некоторый коэффициент. Такой вид зависимости скорости деформации от давления наблюдается в диапазоне высоких скоростей деформации $10^5 - 10^{10} \text{ s}^{-1}$ и давлений 1 - 40 GPa [5]. При квазистатических скоростях деформации $10^{-4} - 10^3 \text{ s}^{-1}$ предел текучести и напряжение течения подчиняются известному закону $\sigma \sim (k_{\rm B}T/\Omega) \ln \dot{\varepsilon}$ [6], свидетельствующему о термоактивированном характере перемещения дислокаций в этом скоростном диапазоне (здесь $\Omega \approx 10^3 b^3$ — активационный объем, b — вектор Бюргерса, *Т* — температура, *k*_B — постоянная Больцмана).

В литературе существуют разные предположения относительно зависимости $\dot{\varepsilon}(\sigma)$ в диапазоне динамических скоростей деформации. Так, в [7–9] предполагается, что в случае ОЦК-кристаллов сильная зависимость напряжения течения от скорости деформации в этом диапазоне вызвана снижением величины активационного объема в выражении $\sigma \sim (k_{\rm B}T/\Omega) \ln \dot{\varepsilon}$ до минимального значения $\Omega \approx b^3$. Что касается механизма появления собственно соотношения СГ, то, согласно [2], его возникновение может быть связано с нелинейным характером зависи-

мости скорости диссипации энергии удара от давления. Авторы работы [10] при численном моделировании на основе дислокационно-кинетических соотношений процесса образования ударной волны пришли к выводу, что появление степенного закона СГ обусловлено механизмом гетерогенного зарождения дислокаций при распространении ударной волны по кристаллу. Недостатком компьютерного моделирования является, однако, то, что с его помощью нельзя установить явный вид зависимости $\dot{\varepsilon}(P)$ в форме аналитического соотношения.

Целью настоящей работы является теоретический анализ механизма возникновения соотношения СГ на основе дислокационно-кинетического подхода с учетом особенностей пластической деформации кристаллов при прохождении по ним ударных волн большой интенсивности, а также получение соответствующих количественных соотношений в явном виде.

2. Особенности пластической деформации кристаллов ударными волнами

Специфика ударного нагружения состоит в том, что образец (кристалл) подвергается неоднородному по длине механическому воздействию, а именно воздействию волны упругого сжатия кристалла. В результате на границе сжатой и не подвергнутой еще сжатию частей кристалла возникает несовместимость деформации ε_G , провоцирующая возникновение геометрически необходимых (ГН) дислокаций в результате образованиия новых или активации существующих до удара дислокационных источников. Впервые это обстоятельство отмечено в [11,12] и получило количественную оценку в работе [13]. Согласно [13], плотность ГН-дислокаций ρ_G при одноосном сжатии кристалла ударной волной зависит от величины относительного изменения его удельного объема $V/V_0 = \exp(-\varepsilon_G)$ следующим образом:

$$\rho_G = \rho_G^0 \left[1 - \left(\frac{V}{V_0}\right)^{1/3} \right]^3, \quad \rho_G^0 = \frac{0.4(1-\nu)\pi^2}{\sqrt{2}b^2}, \quad (1)$$

где V и V₀ — удельные объемы сжатой и не подвергнутой сжатию частей кристалла соответственно, *v* — коэффициент Пуассона.

Согласно диаграмме Рэнкина-Гюгонио, P(V) — величина давления в волне — определяется уравнением [13]

$$P = P_0 \frac{1 - V/V_0}{[1 - S(1 - V/V_0)]^2},$$
(2)

где $P_0 = C_0^2/V_0 \approx E$; C_0 и E — соответственно продольная скорость звука и модуль Юнга в отсутствие сжатия кристалла, S — эмпирический параметр, равный в случае меди 1.49. Обращая уравнение (2), находим зависимость относительного изменения удельного объема от давления

$$\frac{V}{V_0} = 1 - \frac{1}{S} \left\{ \left(1 + \frac{1}{2S} \frac{P_0}{P} \right) - \left[\left(1 + \frac{1}{2S} \frac{P_0}{P} \right)^2 - 1 \right]^{1/2} \right\}.$$
(3)

После подстановки (3) в (1) получаем зависимость плотности дислокаций ρ_G от давления P. На рис. 1 она показана в двойных логарифмических координатах (кривая I) применительно к данным для кристаллов меди: b = 0.26 nm, $P_0 \approx E_{[001]} = 128$ GPa, $\nu = 0.34$. При $P \ll P_0$ из (2) и (3) следует, что $V/V_0 \approx 1 - P/P_0$. Подставляя эту оценку в соотношение (1), находим зависимость плотности ГН-дислокаций от давления и деформации ε_G при относительно малых их значениях

$$\frac{\rho_G}{\rho_G^0} \approx \frac{1}{3^3} \left(\frac{P}{P_0}\right)^3 \approx \left(\frac{\varepsilon_G}{3}\right)^3. \tag{4}$$

На рис. 1 зависимость (4) показана пунктиром.¹ Закон $\rho_G \sim P^3$ выполняется приблизительно до давлений $P \approx 0.1P_0$ или, поскольку $P_0 \approx E$, до давлений P < E/10. На рис. 1 показаны также экспериментальные данные, касающиеся зависимости плотности дислокаций от давления в ударной волне при ее распространении в направлении оси [001] в кристаллах Си и Ni [14]. Видно, что экспериментальные точки лежат несколько ниже кривой *I*. Эксперименту лучше соответствует кривая *2*, при расчете которой вместо численного коэффициента 0.4 в (1) использовалось в 4 раза меньше его значение 0.1.

Рис. 1. Зависимость плотности дислокаций в кристаллах Cu [14] и Ni [14] от давления в ударной волне. *1* и 2 — расчет согласно уравнениям (*1*) и (*3*), *1'* — согласно уравнению (4).

Другая особенность пластической деформации кристаллов интенсивной ударной волной — высокая скорость движения дислокаций в волне $10^2 - 10^3$ m/s, контролируемая их взаимодействием с фононами [15] и ограниченная возможными псевдорелятивистскими эффектами [16–21]. Согласно [18,19,21], скорость дислокаций в ударной волне *и* определяется уравнением

$$\frac{m_0}{[1-(u/u_s)^2]^{3/2}}\frac{du}{dt} + \frac{Bu}{[1-(u/u_s)^2]^n} = b\tau.$$
 (5a)

Здесь m_0 — масса покоя единицы длины дислокации, u_s — скорость сдвиговых волн в кристалле, t — время, B — коэффициент вязкого торможения дислокаций, τ — напряжение сдвига, действующее на дислокацию, n = 0 [19], 1/2 [18,20] и 3/2 [21]. В безразмерных переменных

$$u_* = u/u_s, \qquad t_* = t/t_0, \qquad \tau_* = \tau/\tau_B,$$
 (5b)

где $t_0 = m_0/B$, $\tau_B = Bu_s/b$, уравнение (5a) принимает вид

$$\frac{du_*}{dt_*} + u_*(1 - u_*^2)^{3/2 - n} = \tau_*[1 - u_*^2]^{3/2}.$$
 (5c)

В отсутствие релятивистских эффектов решение уравнения (5c) $u/u_s = (\tau/\tau_B) (1 - \exp(-t/t_0))$ описывает достижение за время $t \approx t_0$ стационарной скорости дислокаций. Оценки показывают, что в случае меди и других ГЦК-металлов $t_0 \approx 1-100$ ps, $\tau_B \approx 10-100$ MPa при $B = 10^{-6} - 10^{-4}$ Pa · s. Из этих оценок следует, что при длительности ударного импульса t > 1 ns скорость дислокаций быстро принимает стационарное значение, и в (5c) можно не учитывать инерционную составляющую напряжения: $du_*/dt_* = 0$. Ограничение скорости дислокаций может быть связано в этом случае с вязкой

¹ Степенной характер зависимости $\rho_G \sim P^3$ остался незамеченным авторами [13].

Рис. 2. Зависимость скорости вязкого торможения дислокаций *u* от напряжения сдвига τ в координатах $u/u_s - \tau/\tau_B$ с учетом релятивистского ограничения скорости дислокаций скоростью распространения сдвиговых волн u_s . *I* и 2 — расчет согласно уравнению (5с) при $du_*/dt_* = 0$ и n = 1/2 и 3/2 соответственно.

составляющей напряжения торможения дислокаций. На рис. 2 приведены численные решения уравнения (5с) при n = 1/2 (кривая *I*, $u_* = \tau_*/(1 + \tau_*^2)^{1/2}$) и n = 3/2 (кривая *2*) с учетом этого обстоятельства. Из них видно, что релятивистское ограничение скорости вязкого торможения дислокаций наступает при напряжениях сдвига $\tau \approx 10\tau_B \approx 0.1-1$ GPa, т.е. при давлениях $P \approx 1-10$ GPa.

3. Соотношение Свигла-Грэди

С двумя рассмотренными выше особенностями пластической деформации кристаллов ударными волнами связана треться ее особенность, а именно необычная (степенная) зависимость скорости деформации $\dot{\varepsilon} = \dot{\varepsilon}_G = \dot{V}/V$ от давления (напряжения), описываемая эмпирическим соотношением [1,2]

$$\dot{\varepsilon} = K_p P^4. \tag{6}$$

В отсутствие упругой составляющей полной скорости деформации $\dot{\varepsilon}$ последняя целиком определяется скоростью пластической деформации $\dot{\varepsilon}_{\rm pl}$. Согласно соотношению Орована² $\dot{\varepsilon}_{\rm pl} = mb\rho u$, скорость пластической деформации зависит от плотности дислокаций ρ , скорости перемещения дислокаций u и ориентационного фактора m (m = 0.41 при ориентации оси кристалла [001] вдоль направления удара). В ударной волне при $P < 0.1P_0$ плотность дислокаций $\rho = \rho_G \sim P^3$ определяется соотношением (4), а скорость дислокаций $u(\tau)$ —

девиатором напряжений $\sigma_{xy} = \sigma_{zz} - v(\sigma_{xx} + \sigma_{yy}),$

$$\tau = m\sigma_{xy} = m \frac{1-2\nu}{2(1-\nu)} P.$$
⁽⁷⁾

Принимая далее во внимание релятивистское ограничение скорости дислокаций (рис. 2, кривая 2)

$$u = \frac{\tau}{\sqrt{\tau_B^2 + \tau^2}} u_s, \tag{8a}$$

где $\tau_B = Bu_s/b$, получим, что при $\tau \ll \tau_B$ скорость дислокаций линейно зависит от давления P

$$u = m \frac{1 - 2\nu}{2(1 - \nu)} \left(\frac{b}{B}\right) P.$$
(8b)

Подставляя (4) и (8b) в формулу Орована, имеем следующее выражение для зависимости скорости пластической деформации от давления в волне при относительно малых его значениях:

$$\dot{\varepsilon} = K_P \left(\frac{P}{P_0}\right)^4 = K_P \left(\frac{P}{E}\right)^4 \sim P^4, \qquad (9a)$$

где

$$K_P = \frac{0.4m^2(1-2\nu)\pi^2}{2^{3/2}3^3} \left(\frac{E}{B}\right) \approx 2.6 \cdot 10^{-3} \left(\frac{E}{B}\right). \quad (9b)$$

Найденная зависимость скорости деформации от давления (9a) качественно соответствует эмпирическому закону Свигла-Грэди (6).

Таким образом, степенная зависимость скорости деформации от давления в условиях интенсивного ударного нагружения кристалла в основном определяется зависимостью плотности ГН-дислокаций от давления $\rho_G \sim P^3$ и в меньшей степени скоростью вязкого торможения дислокаций $u \sim P$.

4. Обсуждение результатов

На рис. 3, *а* и *b* представлены экспериментальные данные, касающиеся зависимости скорости пластической деформации от давления в ударной волне для кристаллов меди [1,4,22] и алюминия [1,4,5]. Сплошные кривые на этих рисунках соответствуют теоретическим зависимостям скорости деформации от давления *P* согласно формуле Орована $\dot{\varepsilon}_{\rm pl} = mb\rho_G u$, где плотность ГН-дислокаций определяется уравнением (1), а скорость дислокаций — уравнениями (7) и (8а). Пунктирные линии на рис. 3, *a* и *b* построены согласно соотношению СГ. В табл. 1 приведены значения коэффициентов *K*_P и напряжений τ_B в Cu и Al, а также значения модуля сдвига μ и других параметров, использованных при расчете кривых на этих рисунках.

Согласно имеющимся в литературе экспериментальным и теоретическим оценкам, величина коэффициентов вязкого торможения дислокаций *В* варьируется в пределах от 10^{-6} до 10^{-4} Pa · s [15]. На рис. 4 кривые 1-4

² Относительно применимости формулы Орована в условиях ударного нагружения см. Приложение.

Кристалл	$K_P \cdot 10^{-12}, \mathrm{s}^{-1}$	$ au_B, GPa$	$B \cdot 10^4 \mathrm{Pa} \cdot \mathrm{s}$	$u_s \cdot 10^{-3}, \mathrm{m \cdot s^{-1}}$	E, GPa	μ , GPa	<i>b</i> ,nm
Cu	1.07	1.1	3.0	2.3	128	48	0.26
Al	0.22	0.9	9.0	3.2	70	27	0.28

Таблица 1. Значения коэффициентов *K_P* и напряжений *т_B* в кристаллах Cu и Al, а также параметров, использованных при их расчете

иллюстрируют результаты расчета для кристаллов Cu зависимости скорости дислокаций от давления согласно соотношениям (7) и (8а) при варьировании величины коэффициента *B* интервале $10^{-6}-10^{-3}$ Pa · s. Видно, что

Рис. 3. Зависимость скорости пластической деформации $\dot{\varepsilon}$ от давления в ударной волне *P* в кристаллах Cu [1,4,22] (*a*) и Al [1,4,5] (*b*). Сплошные кривые — расчет согласно формуле Орована $\dot{\varepsilon} = mb\rho_G(P)u(P)$ с учетом соотношений (1), (7) и (8a), пунктирные — согласно уравнению (9a).

Рис. 4. Расчет зависимости скорости вязкого торможения дислокаций в Cu от давления в ударной волне *P* согласно соотношениям (7) и (8a) при величине коэффициента вязкого торможения дислокаций *B* Pa · s: $I - 10^{-6}$, $2 - 10^{-5}$, $3 - 10^{-4}$, $4 - 10^{-3}$; 3' -расчет согласно линейной зависимости скорости дислокаций *u* от напряжения τ .

рост величины этого коэффициента приводит к росту характерного напряжения вязкого торможения дислокаций τ_B и сдвигу кривых u(P) в область более высоких давлений наступления релятивистского ограничения скорости дислокаций. В результате область линейной зависимости скорости дислокаций от давления расширяется (на рис. 4 она обозначена пунктиром).

Приведенные в табл. 1 значения *B* в кристаллах меди и алюминия выходят за верхнюю границу имеющихся в литературе оценок этого коэффициента: $B = 10^{-4}$ Pa · s. Эти значения можно в 4 раза снизить, если в уравнении (1) для плотности дислокаций вместо численного коэффициента 0.4 использовать меньшее его значение 0.1 (см. раздел 2, рис. 1, кривая 2). В целом, приведенные на рис. 3, *a* и *b* экспериментальные данные и результаты расчетов показывают, что закон СГ выполняется в достаточно широком диапазоне давлений. На это указывает также то, что в настоящее время нет экспериментальных свидетельств существования релятивистских ограничений для скорости дислокаций при ударе. Это, возможно, связано с тем, что сжа-

Параметр	Mg [25]	Be [1]	α-Fe [4]	Mo [4]	Ta [26]
$K_P \cdot 10^{-12}, \ \mathrm{s}^{-1}$	0.73	2.17	2.56	1.92	0.29
E, GPa	46	300	210	340	190

Таблица 2. Значения коэффициентов K_P и модулей Юнга E в ГПУ- и ОЦК-металлах

тие кристалла ударной волной увеличивает скорость сдвиговых волн u_s и коэффициент вязкого торможения дислокаций B, отодвигая тем самым возникновение релятивистских эффектов в область все более высоких давлений.

В литературе обычно вместо зависимости скорости пластической деформации от давления приводится зависимость давления (напряжения) от скорости деформации. На рис. 5 данные для кристаллов Cu (рис. 3, *a*) представлены в этом традиционном виде. Помимо динамической ветви зависимости $\dot{\varepsilon}(P)$ (пунктир) показана также термоактивационная ветвь $\sigma(\dot{\varepsilon}) \sim (k_{\rm B}T/\Omega) \ln \dot{\varepsilon}$ для меди [23] (крестики). Видно, что переход с одной ветви на другую происходит в довольно узком интервале скоростей деформации $10^4 - 10^5 \, {\rm s}^{-1}$. Можно предполагать, что в рассматриваемом интервале скорость деформации контролируется преимущественно скоростью вязкого торможения дислокаций $\dot{\varepsilon} \sim \sigma$.

Чтобы проверить это предположение, примем во внимание, что при варьировании напряжений (давления) в широком диапазоне зависимость скорости дислокаций $u = l_{\rho}/(t_a + t_B)$ от напряжения определяется двумя характерными временами. Первое — время термоактивированного преодоления дислокациями барьеров с коротким радиусом действия $t_a = (l_{\rho}/u_s) \exp(H/kT)$ с расстоянием между ними l_{ρ} . Второе — время безактивационного преодоления барьеров, контролируемое скоростью вязкого торможения дислокаций $t_B = l_{\rho}/u_B$, где $u_B = b\tau/B$. Подставляя эти времена в приведенное выше

Рис. 5. Зависимость напряжений течения σ [23] и давления в ударной волне *P* [1,4,22] в кристаллах Си от скорости деформации $\dot{\varepsilon}$. Сплошная кривая получена по уравнениям (10), пунктирная прямая — по соотношению СГ (уравнение (9а)).

выражение для скорости дислокаций *и*, получаем для нее и скорости пластической деформации зависимости от напряжения в широком диапазоне его изменения

$$u(\tau) = \frac{u_s}{\exp\left(\frac{H(\tau)}{kT}\right) + \frac{\tau_B}{\tau}},$$
$$\dot{\varepsilon}(\tau) = mb\rho(\tau)u(\tau).$$
(10)

Здесь $H = H_0 - \Omega(\tau - \tau_\mu), H_0, \ \Omega = b^2 l_\rho$ и $\tau_\mu = \alpha \mu b \rho^{1/2}$ энергия активации, величина потенциального барьера, активационный объем и деформационное упрочнение кристалла соответственно, $\alpha = 0.5$ — коэффициент взаимодействия дислокаций, $l_{\rho} = 1/\rho^{1/2}$ расстояние между дислокациями леса с плотностью $\rho(\tau) = \rho_0 + \rho_G(\tau)$, где ρ_0 и ρ_G — исходная (до удара) и генерируемая в ударной волне плотности дислокаций соответственно. При написании уравнений (10) предполагалось, что в чистом ГЦК-кристалле единственными потенциальными барьерами для движущихся дислокаций являются дислокации леса в некомпланарных плоскостях скольжения. В кристаллах меди, согласно [24], для образования ступеньки на движущейся дислокации при пересечении ею дислокаций леса требуется энергия $H_0 = 1.4 \,\mathrm{eV} \approx 2.2 \cdot 10^{-19} \,\mathrm{J}.$

На рис. 5 сплошная кривая демонстрирует результаты расчета зависимости (в неявной форме) напряжения течения (давления Р) от скорости пластической деформации в кристаллах Си согласно уравнениям (10) при начальной плотности дислокаций $\rho_0 = 3 \cdot 10^{12} \, {
m m}^{-2}.$ Видно, что эта зависимость имеет три характерных участка: участок А термоактивированного движения дислокаций через лес дислокаций с плотностью ρ_0 , $\sigma \sim (kT/\Omega) \ln \dot{\epsilon}$, участок *B* надбарьерного движения дислокаций через этот лес со скоростью вязкого торможения дислокаций, $\sigma \sim \dot{\varepsilon}$ (см. также [8]), и участок Cгенерации ГН-дислокаций ударной волной, описываемый соотношением СГ $P \sim \dot{\epsilon}^{1/4}$ (пунктир). Следует заметить, что впервые все три ветви зависимости скорости пластической деформации от напряжения рассчитаны в рамках единого микроскопического подхода на основе дислокационно-кинетических соотношений (10) и представлены в виде одной кривой (рис. 5).

В работе мы ограничились анализом данных, относящихся к выполнению соотношения СГ в чистых ГЦКкристаллах. Для металлов с ГПУ-решеткой закон СГ также выполняется (Ве [1], Mg [25]). Что касается металлов с ОЦК-решеткой, то указанное соотношение зафиксировано в α -Fe [1,4], Mo [4] и Та [26]. В табл. 2 приведены оценки коэффициентов K_P в ГПУ- и ОЦКметаллах согласно данным этих работ. Они имеют тот же порядок величины, что и значения этих коэффициентов в ГЦК-металлах (табл. 1). В табл. 2 указаны также значения модулей Юнга, использованные при расчете коэффициентов K_P в ГПУ- и ОЦК-металлах.

В [27] экспериментально установлено, что время откольного разрушения (spallation) t_f в большой группе металлических материалов изменяется с давлением в соответствии с соотношением $t_f \sim P^{-4}$. Откол связан с внутренним пластическим разрывом материала, следовательно, время откольного разрушения контролируется скоростью пластической деформации $\dot{\varepsilon} \sim P^4$ и величиной критической деформации разрыва ε_f , не зависящей от скорости деформации. В результате в согласии с данными [27] находим, что $t_f = \varepsilon_f/\dot{\varepsilon} = (\varepsilon_f/K_P)(E/P)^4 \sim P^{-4}$.

5. Заключение

Таким образом, результаты настоящей работы показывают, что соотношение СГ в виде степенной зависимости скорости деформации от давления (напряжения) имеет серьезное физическое (микроскопическое) основание. Этим основанием является механизм генерации на фронте ударной волны геометрически необходимых дислокаций с плотностью $\rho_G \sim P^3$. В сочетании с линейной зависимостью скорости вязкого торможения дислокаций от давления это дает экспериментально наблюдаемую степенную зависимость скорости деформации от давления $\dot{\varepsilon} \sim P^4$. Оценки коэффициентов K_P , приведенные в табл. 1 и 2, свидетельствуют об универсальном характере этой зависимости для большой группы кристаллических материалов.

Приложение

В литературе встречается мнение, что в условиях ударного нагружения для скорости пластической деформации следует использовать соотношение $\dot{\varepsilon} = b\dot{\rho}\lambda$, а не формулу Орована $\dot{\varepsilon} = b\rho u$. Здесь $\dot{\rho}$ — скорость генерации дислокаций, λ — длина свободного пробега дислокаций. На самом деле эти соотношения экивавалентны друг другу, что можно продемонстрировать на примере одной расширяющейся дислокационной петли радиуса *R*. Дислокационный ансамбль в кристалле состоит из множества таких петель разного радиуса.

При радиусе *R* и длине петли $L = 2\pi R$ она занимает объем кристалла $V = \pi R^2 2b$. Следовательно, связанная с петлей плотность дислокаций определяется выражением $\rho = L/V = 1/bR$, и поэтому $\rho R = b^{-1} = \text{const.}$ Дифференцируя это соотношение по времени, находим, что $\dot{\rho}R + \rho \dot{R} = 0$. Поскольку в рассматриваемом случае $R = \lambda$, а $\dot{R} = u$, из последнего соотношения следует, что $\dot{\rho} = -(u/\lambda)\rho$. Подставляя $\dot{\rho}$ в выражение $\dot{\varepsilon} = b|\dot{\rho}|\lambda$, получаем формулу Орована $\dot{\varepsilon} = b\rho u$.

Список литературы

- [1] J.W. Swegle, D.E. Grady. J. Appl. Phys. 58, 692 (1985).
- [2] D.E. Grady. J. Appl. Phys. 107, 013 506 (2010).
- [3] G.I. Kanel, S.V. Razorenov, K. Baumung, J. Singer. J. Appl. Phys. 90, 136 (2001).
- [4] Г.И. Канель, И.Е. Фортов, С.В. Разоренов. УФН 177, 809 (2007).
- [5] J.C. Crowhurst, M.R. Armstrong, K.B. Knight, J.M. Zaug, E.M. Behymer. Phys. Rev. Lett. 107, 144 302 (2011).
- [6] P.S. Follansbee, U.F. Kocks. Acta Mater. 36, 81 (1988).
- [7] R.W. Armstrong, W. Arnold, F.J. Zerilly. Met. Mater. Trans. A 38, 2605 (2007).
- [8] R.W. Armstrong, W. Arnold, F.J. Zerilly. J. Appl. Phys. 105, 023 511 (2009).
- [9] R.W. Armstrong, F.J. Zerilly. J. Phys. D 43, 49 002 (2010).
- [10] R.A. Austin, D.L. McDowell. Int. J. Plasticity 32/33, 134 (2012).
- [11] C.S. Smith. Trans. AIME 212, 574 (1958).
- [12] M.A. Meyers. Scripta Met. 12, 21 (1978).
- [13] M.A. Meyers, F. Gregory, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Boehly, J.S. Wark. Acta Mater. 51, 1211 (2003).
- [14] L.E. Murr. Scripta Met. 12, 201 (1978).
- [15] В.И. Альшиц, В.Л. Инденбом. УФН 115, 3 (1975).
- [16] А.М. Косевич. УФН 84, 579 (1964).
- [17] А.И. Мусиенко, Л.И. Маневич. УФН 174, 861 (2004).
- [18] M.F. Horstemeyer, M.I. Baskes, S.J. Plimton. Acta Mater. 49, 4363 (2001).
- [19] В.С. Красников, Ф.Ю. Куксин, А.Е. Майер, А.В. Янилкин. ФТТ 52, 1295 (2010).
- [20] V.S. Krasnikov, A.E. Mayer, A.P. Yalovets. Int. J. Plast. 27, 1294 (2011).
- [21] А.Е. Майер, А.Е. Дудоров. Вестн. ЧелГУ. Физика 39(254), 12, 48 (2011).
- [22] W. Tong, S. Huang. J. Mech. Phys. Solids 40, 1251 (1992).
- [23] P.S. Follansbee, U.F. Kocks, G. Regazzoni. J. Phys. Coll. 46, 25 (1985).
- [24] Р. Бернер, Г. Кронмюллер. Пластическая деформация монокристаллов. Мир, М. (1969). 272 с.
- [25] Г.В. Гаркушин, Г.И. Канель, С.В. Разоренов. ФТТ 54, 1012 (2012).
- [26] С.В. Разоренов, Г.И. Канель, Г.В. Гаркушин, О.Н. Игнатова. ФТТ 54, 742 (2012).
- [27] А.Я. Учаев, Р.И. Илькаев, В.Т. Пунин, С.А. Новиков, Л.А. Платонов, Н.И. Сельченкова. Вопр. атомной науки и техники. Материаловедение и новые материалы 1(62), 246 (2004).