01;03 Об изгибной неустойчивости объемно заряженной капиллярной струи диэлектрической жидкости

© С.О. Ширяева

Ярославский государственный университет им. П.Г. Демидова, 150000 Ярославль, Россия e-mail: shir@uniyar.ac.ru

(Поступило в Редакцию 7 мая 2009 г.)

Показано, что для струй объемно заряженных диэлектрических жидкостей в окрестности точки k = 0 существует конечной ширины диапазон значений волновых чисел, в котором струя неустойчива по отношению к реализации изгибной неустойчивости. Ширина диапазона волновых чисел, соответствующих неустойчивым волнам с азимутальным числом m = 1, так же как и величина инкремента наиболее неустойчивой волны и величина ее волнового числа, возрастают с ростом электрического заряда, приходящегося на единицу длины струи, и диэлектрической проницаемости жидкости.

Введение

Несмотря на обилие теоретических и экспериментальных работ по изучению неустойчивости движущейся струи жидкости и феномена дробления ее на отдельные капли, многое в физике происходящих процессов остается до сих пор не выясненным и по-прежнему привлекает внимание исследователей. Сказанное, в частности, относится к анализу физических закономерностей полидисперсного капиллярно-электростатического распада струи, имеющей конечную длину, свободный конец которой совершает "хлыстообразное" движение [1-4]. Феномен полидисперсного распада на капли неосесимметричных струй, выбрасываемых с вершин свободно падающих капель [5] и менисков жидкости на торцах капилляров [1,2,6], при реализации их неустойчивости по отношению к поверхностному заряду, известен давно [1,2,5-8]. Он используется в самых разнообразных направлениях техники и технологии, но в основе широкого практического использования явления электростатического диспергирования жидкости лежат лишь феноменологически осмысленные результаты экспериментальных исследований и малая трудоемкость его воспроизведения. Среди множества (более десятка [9,10]) экспериментально регистрируемых режимов электродиспергирования [3,4] хлыстообразное движение конца струи, с которого отрываются капли, наблюдается в большинстве случаев.

В теоретическом смысле феномен возбуждения изгибной неустойчивости струи, который лежит в основе хлыстообразного движения ее конца, исследовался с самого начала теоретического изучения капиллярноэлектростатического дробления струй [11,13] как для диэлектрических [10,14], так и для электропроводных жидкостей [10–13,15]. В [12,13,15] показано, что для идеально проводящей жидкости изгибная мода (цилиндрическая волна на поверхности струи с азимутальным числом *m*, равным единице), устойчивая в отсутствие электрического заряда на струе, теряет устойчивость при как угодно малом поверхностном заряде. Для диэлектрических жидкостей с большими значениями диэлектрической проницаемости отмечается такой же феномен [14].

Закономерности возбуждения изгибной моды для струй диэлектрических жидкостей с малыми значениями диэлектрической проницаемости детально никто не исследовал. Этой проблеме и посвящена настоящая работа.

Формулировка задачи

Пусть дана бесконечная, движущаяся вдоль оси симметрии с постоянной скоростью U₀ цилиндрическая радиусом *R* струя идеальной несжимаемой жидкости с массовой плотностью ρ , диэлектрической проницаемостью ε_{in} и коэффициентом поверхностного натяжения σ . Окружающее струю пространство характеризуется диэлектрической проницаемостью ε_{ex} и пренебрежимо малой массовой плотностью. Примем, что струя заряжена и в рамках модели "вмороженного" заряда последний распределен равномерно по объему с плотностью μ , при этом на единицу длины струи приходится заряд $\eta \equiv \pi R^2 \mu$.

Для упрощения нижеследующих рассуждений перейдем в инерциальную систему координат, движущуюся вместе со струей с такой же скоростью U₀. В такой системе отсчета поле скоростей течения жидкости в струе U(**r**, t) полностью определяется возможными (имеющими, например, тепловую природу) капиллярными волнами на ее поверхности. В безразмерных переменных, в которых $R = \rho = \sigma = 1$, амплитуда поля скоростей волнового течения жидкости в струе будет параметром такого же порядка малости, что и амплитуда капиллярных волн.

Все расчеты проведем в цилиндрической системе координат с осью OZ, совпадающей с осью симметрии струи, орт \mathbf{n}_z которой направлен вдоль вектора скорости \mathbf{U}_0 . Будем исследовать возможность возбуждения

r -

капиллярных волн

$$\sim \exp(im\varphi)\exp(ikz)\exp(st)$$

с азимутальным числом m = 1 на поверхности такой струи. В записанном выражении s и k — частота (в общем случае комплексная) волны и ее волновое число; r, ϕ, z — цилиндрические координаты.

Уравнение свободной поверхности струи, возмущенной капиллярым волновым движением весьма малой амплитуды, запишем в виде

$$F(\mathbf{r},t) \equiv r - 1 - \xi(\varphi, z, t) = 0,$$

где $\xi(\varphi, z, t)$ — возмущение поверхности струи: $|\xi(\varphi, z, t)| \ll 1$. Тепловая природа возникновения возмущения цилиндрической поверхности струи $\xi(\varphi, z, t)$ означает, что такие волны порождаются уже тепловым движением молекул [16] и имеют амплитуду $\sim \sqrt{\kappa T/\sigma}$ (к — постоянная Больцмана; Т — абсолютная температура).

Для любых жидкостей, от сжиженных газов до расплавленных металлов, величина $\sqrt{\kappa T/\sigma}$, определяющая амплитуды таких волн, меньше ангстрема, поэтому для струй любых реальных радиусов будет выполняться соотношение $|\xi(\varphi, z, t)| \ll 1$. В связи со сказанным волны тепловой природы, как правило, называют волнами бесконечно малой амплитуды. Подобная идеализация, естественная на пределе применимости модели жидкости как сплошной среды, широко используется в линейных по малой амплитуде аналитических расчетах, когда основным объектом, подлежащим исследованию, является дисперсионное уравнение.

Математическая формулировка задачи о расчете капиллярного волнового движения на поверхности заряженной струи состоит из уравнений гидродинамики и электростатики (в предположении, что скорость движения поверхности жидкости много меньше релятивистской):

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} - \nabla P; \quad \text{div } \mathbf{U} = 0.$$

На поверхности струи ($r = 1 + \xi$) должны выполняться кинематическое граничное условие:

$$\frac{dF}{dt} = 0;$$

динамическое граничное условие

$$-(P - P_*) + \operatorname{div} \mathbf{n} - P_q = 0; \quad \mathbf{n} \equiv \nabla F / |\nabla F|;$$

n — орт нормали к поверхности струи.

На оси струи поле скоростей U должно быть ограничено

$$r \to 0$$
: $|\mathbf{U}| < \infty$,

 P_* — постоянное давление во внешней среде; $\mathbf{U}(\mathbf{r}, t)$, $P(\mathbf{r}, t)$ — поле скоростей и поле давлений внутри струи; *P*_q — давление электрического поля [17]

$$P_q = -\mu \Phi_{\rm in} + \frac{1}{8\pi} \Big[\varepsilon_{\rm in} \big((\nabla \Phi_{\rm in})^2 - 2(\mathbf{n} \cdot \nabla \Phi_{\rm in})^2 \big) \\ - \varepsilon_{\rm ex} \big((\nabla \Phi_{\rm ex})^2 - 2(\mathbf{n} \cdot \nabla \Phi_{\rm ex})^2 \big) \Big],$$

которое находится из решения краевой задачи для электрических потенциалов внутри $\Phi_{in}(\mathbf{r}, t)$ и вне $\Phi_{ex}(\mathbf{r}, t)$ струи соответственно

$$\Delta \Phi_{\rm in} = -4\pi \, \frac{\mu}{\varepsilon_{\rm in}}; \quad \Delta \Phi_{\rm ex} = 0,$$

$$r = 1 + \xi: \quad \Phi_{\rm in} = \Phi_{\rm ex}, \quad \varepsilon_{\rm in} \mathbf{n} \cdot \boldsymbol{\nabla} \Phi_{\rm in} = \varepsilon_{\rm ex} \mathbf{n} \cdot \boldsymbol{\nabla} \Phi_{\rm ex},$$

$$r \to 0: \quad \Phi_{\rm in} \to 0, \qquad r \to \infty: \quad \Phi_{\rm ex} \to 0.$$

Отметим, что в модели диэлектрической струи заряд "вморожен" в жидкость и на поверхности нет свободных зарядов. Поэтому зависимость электрического потенциала Ф от времени полностью определяется изменением во времени формы поверхности струи, а зависимость от пространственных переменных потенциалов внутри $\Phi_{in}(\mathbf{r}, t)$ и вне струи $\Phi_{ex}(\mathbf{r}, t)$ находится из решения приведенной выше электростатической задачи. (см. "Приложение").

Кроме выписанных граничных условий должно выполняться требование постоянства объема участка струи, длина которого равна длине волны λ :

$$\int_{z_0}^{z_0+\lambda} \int_{0}^{1+\xi} \int_{0}^{2\pi} dz r dr d\varphi = \pi \lambda.$$

Дисперсионное уравнение

Решение сформулированной задачи в линейном по малой амплитуде волн ($|\xi| \ll 1$) приближении будем искать в виде:

$$\xi(\varphi, z, t) = D_1 \exp[i(kz - \omega t + m\varphi)];$$

$$\psi(\mathbf{r}, t) = D_2 I_m(kr) \exp[i(kz - \omega t + m\varphi)];$$

$$\Phi_{\rm in}(\mathbf{r}, t) = \frac{\pi\mu}{\varepsilon_{\rm in}} (1 - r^2) + D_3 I_m(kr) \exp[i(kz - \omega t + m\varphi)];$$

$$\Phi_{\rm ex}(\mathbf{r}, t) = -\frac{2\pi\mu}{\varepsilon_{\rm ex}} \ln r + D_4 K_m(kr) \exp[i(kz - \omega t + m\varphi)],$$

(1)

 $I_m(kr)$ и $K_m(kr)$ — модифицированные функции Бесселя первого и второго рода порядка *т* [18].

Не останавливаясь на процедуре отыскания решения, детально описанной в [15], сразу выпишем дисперсионное уравнение задачи для неосесимметричных волн с m = 1. Дисперсионное уравнение находится из условия совместимости системы однородных алгебраических уравнений относительно неизвестных коэффициентов D_i , которая получается при подстановке проектов ~

решений (1) в граничные условия сформулированной задачи [15]:

$$\begin{split} \omega^2 &= g(k)[k^2 + WF(k, \varepsilon_{\rm in}, \varepsilon_{\rm ex})]; \quad W \equiv \pi \mu^2 \equiv \eta^2 / \pi; \quad (2) \\ F(k, \varepsilon_{\rm in}, \varepsilon_{\rm ex}) &\equiv \frac{1}{[\varepsilon_{\rm in}g(k) - \varepsilon_{\rm ex}h(k)]\varepsilon_{\rm in}\varepsilon_{\rm ex}} \\ &\times \Big[(\varepsilon_{\rm in} - \varepsilon_{\rm ex})^2 g(k)h(k) + \varepsilon_{\rm in}(\varepsilon_{\rm in} - 3\varepsilon_{\rm ex})g(k) \\ &+ \varepsilon_{\rm ex}(3\varepsilon_{\rm in} - \varepsilon_{\rm ex})h(k) + 4\varepsilon_{\rm in}\varepsilon_{\rm ex} \Big]; \\ g(k) &\equiv 1 + \frac{k I_2(k)}{I_1(k)}; \quad h(k) \equiv 1 - \frac{k K_2(k)}{K_1(k)}. \end{split}$$

Отметим, что использованная при получении дисперсионного уравнения (2) модель "вмороженного" заряда является более общей, чем противоположная ей модель идеально проводящей жидкости, в которой поверхностный заряд струи мгновенно перераспределяется так, чтобы потенциал струи оставался постоянным [10,14]. Дисперсионное уравнение, описывающее волны на поверхности струи идеально проводящей жидкости, получается из (2) путем предельного перехода $\varepsilon_{in} \rightarrow \infty$ [10,14,15]. В рамках анализа, проводимого с "физической" степенью точности, условие $\epsilon_{in} \to \infty$ заменяется на более слабое: $\varepsilon_{in} \gg 1$. Сказанное означает, что дисперсионное уравнение (2) можно использовать для анализа устойчивости струй с диэлектрической проницаемостью, изменяющейся в широких пределах: и при $\varepsilon_{in} \sim 2$, и при $\varepsilon_{in} \gg 1.$

Анализ результатов

Из (2) видно, что, когда правая часть дисперсионного уравнения положительна, то частоты вещественны, неосесимметричные волны с азимутальным числом *m* = 1 бесконечно малой амплитуды на поверхности струи устойчивы: виртуально возникнув, они в идеальной жидкости не изменяют своей амплитуды, оставаясь бесконечно малыми, и не влияют на макроскопическое движение струи. В реальной жидкости с отличной от нуля вязкостью такие волны быстро затухают. Если правая часть дисперсионного уравнения отрицательна, то частоты $\omega_{1,2}$ становятся мнимыми, комплексно сопряженными. Мнимому решению дисперсионного уравнения со знаком "плюс" перед мнимой единицей, согласно (1), будет соответствовать экспоненциально растущее со временем решение. В связи со сказанным анализ возможности реализации изгибной неустойчивости струи можно провести на основе исследования дисперсионного уравнения (2).

Поскольку модифицированные функции Бесселя первого рода $I_i(k)$ всегда положительны [18], то и функция g(k), являющаяся множителем в правой части дисперсионного уравнения, также всегда положительна. В отсутствие электрического заряда (при W = 0) в соответствии

Рис. 1. Зависимость $F = F(k, \varepsilon_{in}, \varepsilon_{ex})$ рассчитана при $\varepsilon_{ex} = 1$ для двух жидкостей с различными значениями диэлектрической проницаемости: $\varepsilon_{in} = 1.048$ (1), $\varepsilon_{in} = 40$ (2).

с общей теорией капиллярной неустойчивости струи дисперсионное уравнение имеет только действительные решения. При $W \neq 0$ знак правой части дисперсионного уравнения определится знаком функции $F(k, \varepsilon_{in}, \varepsilon_{ex})$, стоящей множителем при параметре W. В области значений физических параметров, где $F(k, \varepsilon_{in}, \varepsilon_{ex}) > 0$, заряд струи не влияет на устойчивость изгибной моды, а там, где $F(k, \varepsilon_{in}, \varepsilon_{ex}) < 0$, заряд струи будет дестабилизировать струю, в смысле проявления ее изгибной неустойчивости.

На рис. 1 приведены результаты расчета по (2) зависимости функции $F(k, \varepsilon_{in}, \varepsilon_{ex})$ от величины волнового числа k и диэлектрической проницаемости жидкости ε_{in} . Расчеты показывают (см. также рис. 1), что при произвольных значениях диэлектрической проницаемости жидкости $F(k, \varepsilon_{in}, 1) < 0$, и, согласно вышесказанному, изгибная мода может быть дестабилизирована объемными зарядами как угодно малой величины, поскольку, согласно (2), при $\varepsilon_{ex} = 1$ и любых величинах ε_{in} :

$$W \geq \lim_{k \to 0} [k^2 / F(k, \varepsilon_{\rm in}, \varepsilon_{\rm ex})] = 0.$$

Верхняя кривая на рис. 1 рассчитана для жидкого гелия с $\varepsilon_{in} = 1.048$, а нижняя — для жидкости с диэлектрической проницаемостью $\varepsilon_{in} = 40$, которая не может считаться диэлектриком, а потому эта кривая носит чисто иллюстративный характер: демонстрируя масштаб эффекта изменения величины функции $F(k, \varepsilon_{in}, \varepsilon_{ex})$ при увеличении ε_{in} .

На рис. 2, а приведены зависимости квадрата частоты от волнового числа, рассчитанные для различных значений зарядового параметра W для струи жидкого гелия $(\varepsilon_{in} = 1.048)$. Расчеты, проведенные в другом масштабе в окрестности точки k = 0, показывают, что кроме кривой, соответствующей незаряженной струе (W = 0) и входящей в начало координат сверху, все остальные, соответствующие заряженным струям, входят в начало координат снизу. Из рис. 2, а видно, что с увеличением зарядового параметра W ширина диапазона значений волновых чисел, в котором $\omega^2 < 0$ и в котором реализуется изгибная неустойчивость струи, расширяет-

Рис. 2. Зависимости $\omega^2 = \omega^2(k)$, построенные для струи жидкого гелия с $\varepsilon_{in} = 1.048$ (*a*) и для струи жидкости с диэлектрической проницаемостью $\varepsilon_{in} = 5$ (*b*), 20 (*c*), 80 (*d*) при $\varepsilon_{ex} = 1$ и $W = \{0; 1; 2; 3; 4; 5\}$. Кривые расположены сверху вниз в порядке возрастания зарядового параметра W.

ся. Максимальное значение инкремента неустойчивости, определяемое положением минимума зависимости $\omega^2 = \omega^2(k)$ в области $\omega^2 < 0$, увеличивается с ростом W, так же как и волновое число, соответствующее наиболее неустойчивой моде.

Такие же зависимости, что на рис. 2, а, рассчитанные при тех же значениях зарядового параметра И для струй жидкостей с диэлектрической проницаемостью $\varepsilon_{in} = 2; 20; 80,$ приведены на рис. 2, *b*-*d*. Они имеют качественно такой же вид, как и приведенные на рис. 2, а. Из рис. 2 видно, что с увеличением диэлектрической проницаемости жидкости є_{іп} ширина диапазона значений волновых чисел, в котором $\omega^2 < 0$ и в котором реализуется изгибная неустойчивость струи, расширяется, максимальное значение инкремента неустойчивости увеличивается, так же как и волновое число, соответствующее наиболее неустойчивой моде. Видно также, что обсуждаемые эффекты проявляются тем отчетливее, чем больше величина зарядового параметра W. В отсутствие заряда на струе, при W = 0, изгибная мода устойчива для жидкостей с произвольными значениями диэлектрической проницаемости ε_{in} . Расчеты показывают (см. также рис. 2), что независимо от диэлектрической проницаемости жидкости при малых величинах зарядового параметра: $W \leq 1$, значения волновых чисел k_{max} , соответствующих максимальным инкрементам γ_{max} (как и сами инкременты у_{max}), малы и весьма слабо изменяются при изменении ε_{in} . Так, при W = 1 для жидкостей с $\varepsilon_{in} = 2$ (например, керосина, циклогексана или жидкого хлора) и $\varepsilon_{in} = 80$ (для воды) получаем примерно равные значения $k_{max} \approx 0.34$ и $\gamma_{max} \approx 0.2$. Но уже при W = 5 соответствующие значения изменяются примерно в два раза.

На рис. 3 приведена поверхность, определяющая положение правой границы области реализации изгибной неустойчивости струи в пространстве параметров $\{k, \varepsilon_{in}, W\}$, пересеченная плоскостью W = 2 (рис. 3, *a*) и W = 4 (рис. 3, *b*). Видно, что при $W \leq 2$ волновое число, определяющее положение правой границы области неустойчивости, определяемое по кривой, по которой пересекаются поверхность $W = W(k, \varepsilon_{in})$ и плоскость W = const, практически не зависит от величины диэлектрической проницаемости жидкости, тогда как при $W \geq 2$ (см. рис. 3, *b*) такая зависимость появляется.

В проведенном выше анализе значения зарядового параметра $W \equiv \pi \mu^2$ изменялись от нуля до нескольких единиц, а потому естественно задаться вопросом: какие максимально допустимые значения может принимать этот параметр для струй различных жидкостей. В исследуемом феномене электродиспергирования жидкости естественное ограничение на максимальное значение параметра W связано с зажиганием при достаточно большом объемном заряде μ коронного разряда у поверхности струи. Напряженность поля на поверхно-

Рис. 3. Поверхность, определяющая положение правой границы области реализации изгибной неустойчивости струи в пространстве параметров $\{k, \varepsilon_{in}, W\}$, пересеченная плоскостью: a - W = 2, b - 4.

сти объемно заряженного цилиндра радиуса *R* определяется известным выражением: $E \equiv 2\pi\mu R/\varepsilon_{\rm ex}$. Коронный разряд у гладкой цилиндрической поверхности в воздухе при нормальном атмосферном давлении в радиальном электростатическом поле зажигается, согласно эмпирической формуле Пика ([19], стр. 507), при: $E_{\rm cr} \approx 31 \cdot (1 + 0.308/\sqrt{R})$ kV/cm, где *R* измерено в сантиметрах. Для струи с $R = 100\,\mu$ m получим $E_{\rm cr} \approx 126$ kV/cm ≈ 420 CGSE. Если поверхность цилиндра не гладкая, а шероховатая, то критическая для зажигания коронного разряда величина напряженности поля снижается на 10–20% ([19], стр. 507). Но для проводимого качественного из формулы Пика, вполне достаточно.

В размерном виде параметр *W* записывается как $W \equiv \pi \mu^2 R^3 / \sigma \equiv E^2 R / 4\pi \sigma$. Подставив сюда найденное по формуле Пика предельное для зажигания коронного разряда в окрестности струи радиуса *R* значение напряженности поля, можно найти максимально допустимую велчину зарядового параметра (вычисляемого в гауссо-

вой системе единиц):

$$W_{\rm cr} \equiv \frac{\left[31\left(1+\frac{0.308}{300\sqrt{R}}\right)\right]^2 R}{4\pi\sigma}.$$

На рис. 4 приведены результаты расчета по этому соотношению в виде зависимости $W_{\rm cr} = W_{\rm cr}(R, \sigma)$, пересеченные плоскостью $W = {\rm const.}$ Разрядные явления при заданном $W = {\rm const.}$ не влияют на развитие гидродинамических явлений на поверхности струи на геометрическом месте точек, на котором поверхность $W_{\rm cr} = W_{\rm cr}(R, \sigma)$ расположена выше плоскости $W = {\rm const.}$ и существенна там, где поверхность $W_{\rm cr} = W_{\rm cr}(R, \sigma)$ уходит под плоскость $W = {\rm const.}$

В экспериментах по электродиспергированию [1–10] используются жидкости, коэффициенты поверхностного натяжения σ которых изменяются в пределах от 0.354 dyne/cm для жидкого гелия (He⁴ при $T = -271.6^{\circ}$ C) и 1.98 dyne/cm для жидкого водорода при $T = -253.1^{\circ}$ C до ~ 1000 dyne/cm для неорганических веществ в жидком состоянии [20].

Рис. 4. Зависимость критического значения безразмерного зарядового параметра W_{cr} от величины коэффициента поверхностного натяжения жидкости σ , измеренного в dyne/cm, и радиуса струи R, измеренного в cm, пересеченная плоскостью: a - W = 2, диапазон измерения радиуса: $0 < R \le 100 \,\mu$ m; b - W = 4, $0 < R \le 1000 \,\mu$ m.

Журнал технической физики, 2010, том 80, вып. 4

Изгибная неустойчивость наблюдалась в [1-5] для воды ($\sigma \approx 72$ dyne/cm, $\varepsilon_{\rm in} \approx 80$), этилового спирта ($\sigma \approx 22$ dyne/cm, $\varepsilon_{
m in} \approx 25$), этиленгликоля ($\sigma \approx$ \approx 46 dyne/cm, $\varepsilon_{in} \approx$ 39). Радиусы струй в экспериментах, согласно [4], изменялись от единиц до сотен микрометров. Из рис. 4 видно, что для большинства жидкостей с коэффициентами поверхностного натяжения, измеряемыми дестятками dyne/cm, предельное значение безразмерного параметра W_{cr} будет измеряться единицами. Для жидкостей с малыми величинами коэффициента поверхностного натяжения: $\sigma < 2 \, \text{dyne/cm}$ значения W_{cr} могут достигать существенно больших значений. Например, для жидкого водорода $W_{\rm cr} \approx 70$, а для жидкого гелия — $W_{\rm cr} \approx 360$. Из рис. 4, *а* видно, что при W = 2для струй с радиусами, большими 95 µm, и диэлектрической проницаемостью жидкости $\varepsilon_{in} > 70$, т.е. на геометрическом месте точек, на котором поверхность $W_{\rm cr} = W_{\rm cr}(R, \sigma)$ расположена выше плоскости W = 2, разрядные явления не будут препятствовать развитию изгибной неустойчивости.

Для струй меньшего радиуса и меньших значений диэлектрической проницаемости, там где поверхность $W_{\rm cr} = W_{\rm cr}(R, \sigma)$ расположена ниже плоскости W = 2, разрядные явления на поверхности струи будут искажать предсказываемую феноменологию. С ростом величины зарядового параметра роль разрядных явлений усиливается, так, для W = 4 (см. рис. 4, b) разрядные явления на поверхности струи будут существенны для струй большего радиуса, чем при W = 2, вплоть до $R \approx 600 \,\mu$ m. И наоборот, снижение W приводит к уменьшению роли разрядных явлений. Расчеты показывают, что при $W \le 1.25$ разрядные явления не будут проявлять себя даже для струй радиусом порядка единиц микрометров при $\varepsilon_{in} = 70$: в такой ситуации вся поверхность $W_{\rm cr} = W_{\rm cr}(R, \sigma)$ расположена выше плоскости W = 1 на геометрическом месте точек: $1 \le R \le 1000\,\mu{
m m}; \ 1 \le \sigma \le 70\,\mu{
m m}.$ Из рис. 4 видно, что роль разрядных явлений снижается при уменьшении диэлектрической проницаемости жидкости и увеличении радиуса струи.

Заключение

В проведенном исследовании закономерностей реализации изгибной неустойчивости струи объемно заряженной диэлектрической жидкости выяснилось, что назависимо от величины диэлектрической проницаемости такая неустойчивость отсутствует для незаряженной струи (W = 0), но реализуется при как угодно малых значениях безразмерного зарядового параметра $W \neq 0$, пропорционального η^2 — квадрату заряда, приходящегося на единицу длины волны. Волновое число волны, определяющей феноменологию обсуждаемого явления (а именно, k_{max} — волновое число волны, обладающей максимальным инкрементом γ_{max}), увеличивается с ростом диэлектрической проницаемости жидкости и с

ростом безразмерного зарядового параметра, так же как и γ_{max} . Разрядные явления на поверхности сильно заряженной струи оказывают влияние на феноменологию развития изгибной неустойчивости лишь при достаточно больших значениях зарядового параметра: W > 1.25.

Приложение

Решим электростатическую задачу и вычислим давление электрического поля на поверхность заряженной диэлектрической струи вязкой несжимаемой жидкости $P_q(\varphi, z, t)$, полагая, что потенциалы электрического поля внутри Φ^{in} и вне капли Φ^{ex} являются решением краевой задачи

$$\Delta \Phi^{\text{in}} = -4\pi \frac{\mu}{\varepsilon_{\text{in}}}, \quad \Delta \Phi^{\text{ex}} = 0,$$

$$r = 1 + \xi: \qquad \Phi^{\text{in}} = \Phi^{\text{ex}}, \quad \varepsilon_{\text{in}} \mathbf{n} \cdot \nabla \Phi^{\text{in}} = \varepsilon_{\text{ex}} \mathbf{n} \cdot \nabla \Phi^{\text{ex}},$$

.,

 $r o 0: \quad {oldsymbol
abla} \Phi^{\mathrm{in}} o 0, \qquad \quad r o \infty: \quad \Phi^{\mathrm{ex}} o 0.$

Разделим потенциалы электрического поля внутри и вне струи на две части: потенциал на невозмущенной поверхности струи Φ_0 и добавку к потенциалу ϕ , вызванную возмущением поверхности $\xi(\varphi, z, t)$ и имеющую тот же порядок малости

$$\Phi^{\mathrm{in}}=\Phi^{\mathrm{in}}_0+\phi^{\mathrm{in}},\quad \Phi^{\mathrm{ex}}=\Phi^{\mathrm{ex}}_0+\phi^{\mathrm{ex}},$$

Подставив эти разложения в краевую задачу, разобъем ее по порядкам малости. Для этого предварительно распишем выражения для потенциалов и производных по нормали, входящие в граничные условия на возмущенной поверхности струи, в линейном по $|\xi|$ приближении:

$$\begin{split} \Phi^{j}\big|_{r=1+\xi} &= \left[\Phi_{0}^{j} + \phi^{j}\right]\big|_{r=1+\xi} \\ &\approx \left[\Phi_{0}^{j} + \xi \frac{\partial \Phi_{0}^{j}}{\partial r} + \phi^{i}\right]\Big|_{r=1}; \quad j = \{\text{in; ex}\}; \\ &\frac{\partial \Phi^{j}}{\partial n}\Big|_{r=1+\xi} = \left[\frac{\partial \Phi_{0}^{j}}{\partial n} + \frac{\partial \phi^{j}}{\partial n}\right]\Big|_{r=1+\xi} \approx \left[\frac{\partial \Phi_{0}^{j}}{\partial r} + \frac{\partial \phi^{j}}{\partial r}\right]\Big|_{r=1+\xi} \end{split}$$

$$\approx \left[\frac{\partial}{\partial r} + \frac{\partial}{\partial r^2} + \frac{\partial}{\partial r} \right] \Big|_{r=1}$$

При этом учитывалось, что

$$\frac{\partial}{\partial n} \equiv \frac{\partial}{\partial r} - \frac{1}{r} \frac{\partial \xi}{\partial \varphi} \frac{\partial}{\partial \varphi} - \frac{\partial \xi}{\partial z} \frac{\partial}{\partial z},$$

1

а также тот факт, что потенциал электрического поля в отсутствие возмущения поверхности струи Φ_0 обладает осевой симметрией, поэтому

$$\frac{\partial \Phi_0^j}{\partial \varphi} = \frac{\partial \Phi_0^j}{\partial z} = 0, \quad j = \{\text{in; ex}\}.$$

Используя полученные выражения, запишем краевую задачу для отыскания невозмущенных потенциалов

$$\Delta \Phi_0^{\text{in}} = -4\pi \frac{\mu}{\varepsilon}, \quad \Delta \Phi_0^{\text{ex}} = 0,$$

$$r = 1: \quad \Phi_0^{\text{in}} = \Phi_0^{\text{ex}}, \quad \varepsilon_{\text{in}} \partial_r \Phi_0^{\text{in}} = \varepsilon_{\text{ex}} \partial_r \Phi_0^{\text{ex}};$$

$$r \to 0: \quad \nabla \Phi_0^{\text{in}} \to 0, \qquad r \to \infty: \quad \Phi_0^{\text{ex}} \to 0$$

и для добавок первого порядка малости

$$\begin{split} \Delta \phi^{\text{in}} &= 0, \quad \Delta \phi^{\text{ex}} = 0, \\ r &= 1: \qquad \phi^{\text{in}} + \frac{\partial \Phi_0^{\text{in}}}{\partial r} \, \xi = \phi^{\text{ex}} + \frac{\partial \Phi_0^{\text{ex}}}{\partial r} \, \xi; \\ \varepsilon_{\text{in}} \bigg[\frac{\partial \phi^{\text{in}}}{\partial r} + \frac{\partial^2 \Phi_0^{\text{in}}}{\partial r^2} \, \xi \bigg] &= \varepsilon_{\text{ex}} \bigg[\frac{\partial \phi^{\text{ex}}}{\partial r} + \frac{\partial^2 \Phi_0^{\text{in}}}{\partial r^2} \, \xi \bigg]; \\ r &\to 0: \quad \nabla \phi_0^{\text{in}} \to 0, \qquad r \to \infty: \quad \phi_0^{\text{ex}} \to 0. \end{split}$$

Решение нулевого порядка малости имеет вид

$$\Phi_0^{\text{ex}} = -(2\pi\mu/\varepsilon_{\text{ex}})\ln r; \quad \Phi_0^{\text{in}} = (\pi\mu/\varepsilon_{\text{in}})(1-r^2)$$

Общие решения уравнений Пуассона и Лапласа задачи первого порядка малости в цилиндрической системе координат имеют вид разложений по бегущим вдоль оси OZ волнам с различными волновыми и азимутальными числами. Однако, имея в виду, что цель данного исследования есть анализ дисперсионного уравнения и устойчивости струи по отношению к виртуальным возбуждениям определенной азимутальной моды (m = 1), можно ограничиться записью частных решений этих уравнений

$$\phi^{in} = D_3 I_m(kr) \exp[i(kz - \omega t + m\varphi)];$$

$$\phi^{ex} = D_4 K_m(kr) \exp[i(kz - \omega t + m\varphi)],$$

где m — азимутальное число; k — волновое число; $I_m(kr)$ и $K_m(kr)$ — модифицированные функции Бесселя первого рода и второго рода; D_3 и D_4 — коэффициенты.

В аналогичном виде представим и функцию $\xi(\varphi, z, t)$, описывающую возмущение равновесной поверхности струи:

$$\xi(\varphi, z, t) = D_1 \exp[i(kz - \omega t + m\varphi)]$$

где D_1 — амплитуда возмущения.

Из граничных условий на невозмущенной поверхности струи r = 1 несложно получить связь коэффициентов D_3 и D_4 с D_1 :

$$\begin{split} D_{3} &= D_{1} \frac{2\pi\mu}{I_{m}(k)} \bigg[\bigg(2 - \bigg(\frac{\varepsilon_{\text{ex}}}{\varepsilon_{\text{in}}} - 1 \bigg) \\ &\times \frac{kK'_{m}(k)}{K_{m}(k)} \bigg) \bigg/ \bigg(\varepsilon_{\text{in}} \frac{kI'_{m}(k)}{I_{m}(k)} - \varepsilon_{\text{ex}} \frac{kK'_{m}(k)}{K_{m}(k)} \bigg) \bigg]; \\ D_{4} &= D_{1} \frac{2\pi\mu}{K_{m}(k)} \bigg[\bigg(2 + \bigg(\frac{\varepsilon_{\text{in}}}{\varepsilon_{\text{ex}}} - 1 \bigg) \\ &\times \frac{kI'_{m}(k)}{I_{m}(k)} \bigg) \bigg/ \bigg(\varepsilon_{\text{in}} \frac{kI'_{m}(k)}{I_{m}(k)} - \varepsilon_{\text{ex}} \frac{kK'_{m}(k)}{K_{m}(k)} \bigg) \bigg]. \end{split}$$

Давление электрического поля на свободную поверхность струи будем рассчитывать по соотношению [17]

$$P_{q} = -\mu \Phi^{\text{in}} + \frac{1}{8\pi} \bigg[\varepsilon_{\text{in}} \Big((\nabla \Phi^{\text{in}})^{2} - 2 \big(\mathbf{n} \cdot \nabla \Phi^{\text{in}} \big)^{2} \Big) \\ - \varepsilon_{\text{ex}} \Big((\nabla \Phi^{\text{ex}})^{2} - 2 \big(\mathbf{n} \cdot \nabla \Phi^{\text{ex}} \big)^{2} \Big) \bigg].$$

Используя граничные условия на поверхности раздела двух диэлектриков, это выражение можно привести к виду:

$$P_{q} = -\mu \Phi^{\text{in}} + \frac{(\varepsilon_{\text{in}} - \varepsilon_{\text{ex}})}{8\pi} \bigg[\bigg((\nabla \Phi^{\text{ex}})^{2} - \bigg(1 - \frac{\varepsilon_{\text{ex}}}{\varepsilon_{\text{in}}} \bigg) (\mathbf{n} \cdot \nabla \Phi^{\text{ex}})^{2} \bigg) \bigg].$$

В нулевом порядке малости будем иметь

$$\begin{split} P_q^{(0)} &= \left[-\mu \Phi_0^{\text{in}} + \frac{1}{8\pi} \left(\varepsilon_{\text{in}} - \varepsilon_{\text{ex}} \right) \frac{\varepsilon_{\text{ex}}}{\varepsilon_{\text{in}}} \left(\partial_r \Phi_0^{\text{ex}} \right)^2 \right]_{r=1} \\ &= \pi \mu^2 \, \frac{\left(\varepsilon_{\text{in}} - \varepsilon_{\text{ex}} \right)}{2\varepsilon_{\text{in}}\varepsilon_{\text{ex}}}. \end{split}$$

В первом порядке малости

$$p_q = \left[-\mu \left(\phi^{\text{in}} - \frac{2\pi\mu}{\varepsilon_{\text{in}}} \xi \right) - \frac{(\varepsilon_{\text{in}} - \varepsilon_{\text{ex}})}{4\pi} \frac{2\pi\mu}{\varepsilon_{\text{in}}} \right]$$

$$\times \left(\partial_r \phi^{\text{ex}} + \frac{2\pi\mu}{\varepsilon_{\text{ex}}} \xi \right) \right]_{r=1} = -\pi\mu^2 G_m(k, \varepsilon_{\text{in}}, \varepsilon_{\text{ex}}) \xi;$$

$$G_m(k, \varepsilon_{\text{in}}, \varepsilon_{\text{ex}}) \equiv \frac{1}{[\varepsilon_{\text{in}}g_m(k) - \varepsilon_{\text{ex}}h_m(k)]\varepsilon_{\text{in}}\varepsilon_{\text{ex}}}$$

$$\times [(\varepsilon_{\text{in}} - \varepsilon_{\text{ex}})^2 g_m(k)h_m(k) + \varepsilon_{\text{in}}(\varepsilon_{\text{in}} - 3\varepsilon_{\text{ex}})g_m(k) - \varepsilon_{\text{ex}}(\varepsilon_{\text{ex}} - 3\varepsilon_{\text{in}})h_m(k) + 4\varepsilon_{\text{in}}\varepsilon_{\text{ex}}];$$

$$g_m(k) \equiv m + \frac{kI_{m+1}(k)}{I_m(k)}; \quad h_m(k) \equiv m - \frac{kK_{m+1}(k)}{K_m(k)}.$$

Работа выполнена в рамках тематического плана университета, при поддержке грантов: губернатора Ярославской области, Рособразования № 2.1.1/3776, РФФИ № 09-01-00084 и 09-08-00148.

Список литературы

- Magarvey R., Outhouse L. // J. Fluid Mech. 1962. Vol. 13. N 1. P. 151–157.
- [2] Huebner A., Chu H. // J. Fluid Mech. 1971. Vol. 49. N 2. P. 361–372.
- [3] Cloupeau M., Prunet Foch B. // J. Electrostatics. 1990. Vol. 25. P. 165–184.
- [4] Jaworek A., Krupa A. // J. Aerosol Sci. 1999. Vol. 30. N 7. P. 873–893.
- [5] Macky W.A. // Pros. Roy. Soc., London. 1931. Vol. 133. N A822. P. 565–587.

Журнал технической физики, 2010, том 80, вып. 4

- [6] English W.N. // Phys. Rev. 1948. Vol. 74. N 2. P. 179-189.
- [7] Zeleny J. // Phys. Rev. 1914. Vol. 3. N 2. P. 69–91.
- [8] Zeleny J. // Phys. Rev. 1917. Vol. 10. N 1. P. 1-6.
- [9] Ширяева С.О., Григорьев А.И., Святченко А.А. Классификация режимов работы электрогидродинамических источников ионов. Препринт ИМ РАН № 25. Ярославль, 1993. 118 с.
- [10] Ширяева С.О., Григорьев А.И., Волкова М.В. Спонтанный капиллярный распад заряженных струй. Ярославль: Изд-во ЯрГУ, 2007. 340 с.
- [11] Strutt J.W. (Lord Rayleigh) // Phil. Mag. 1882. Vol. 14.
 P. 184–186.
- [12] Taylor G. // Proc. Roy. Soc. London, 1969. Vol. A313. P. 453–470.
- [13] Saville D. // Phys. of Fluids. 1971. Vol. 14. N 6. P. 1095–1099.
- [14] Ширяева С.О., Григорьев А.И., Левчук Т.В., Рыбакова М.В. // ЖТФ. 2003. Т. 73. Вып. 4. С. 5–12.
- [15] Ширяева С.О., Григорьев А.И., Левчук Т.В. // ЖТФ. 2003.
 Т. 73. Вып. 11. С. 22–30.
- [16] Френкель Я.И. // ЖЭТФ. 1936. Т. 6. № 4. С. 348–350.
- [17] Ландау Л.Д., Лифииц Е.М. Электродинамика сплошных сред. М.: Наука, 1992. 664 с.
- [18] Справочник по специальным функциям / Под ред. М. Абрамовиц, И. Стиган. М.: Наука, 1979. 831 с.
- [19] *Райзер Ю.П.* Физика газового разряда. М.: Наука, 1987. 592 с.
- [20] Справочник химика / Под ред. Б.П. Никольского. Т. 1. Л.: Химия, 1971. 1072 с.