## Краткие сообщения

05

# Наиболее опасное направление скольжения в ГЦК-кристалле серебра при деформации сдвига (111) $\langle 1\overline{2}1 \rangle$

#### © С.Н. Бедарев, Д.Д. Рудер

Алтайский государственный университет, 656049 Барнаул, Россия e-mail: bedarev@law.asu.ru, ddr@asu.ru

#### (Поступило в Редакцию 10 августа 2009 г.)

Методом компьютерного моделирования исследован механизм разрушения ГЦК-решетки серебра при деформации сдвига (111)  $\langle 1\bar{2}1 \rangle$  и определено направление неустойчивого смещения атомов в кристалле при нарушении динамического условия устойчивости. Показано, что наиболее опасное направление движения атомов в кристалле, приводящее к структурной неустойчивости, не полностью совпадает с направление ем  $\langle 1\bar{2}1 \rangle$ , лежащим в плоскости (111), а имеет перпендикулярную составляющую в направлении [111].

Условия устойчивости кристаллической решетки под действием внешних нагрузок были впервые достаточно полно и систематически исследованы Борном [1]. В работе установлено, что общим условием устойчивости решетки являются условия действительности всех частот нормальных колебаний для всех волновых векторов **k** внутри зоны Бриллюэна:

$$\omega^2(\mathbf{k}) > 0. \tag{1}$$

Условия (1) можно рассматривать как динамические условия устойчивости кристаллической решетки. В длиноволновом пределе динамические условия устойчивости совпадают с условиями термодинамической устойчивости кристалла при статической однородной деформации.

Анализ динамических условий устойчивости решетки обладает тем несомненным достоинством, что при решении задачи на собственные значения динамической матрицы  $D_{\alpha\beta}(\mathbf{k})$  [2]:

$$D_{\alpha\beta}(\mathbf{k})e_{\beta}(\mathbf{k}) = \omega^{2}(\mathbf{k})e_{\alpha}(\mathbf{k})$$
<sup>(2)</sup>

можно определить и собственные векторы  $e_{\alpha}(\mathbf{k})$ , направление которых совпадает с направлением колебания атомов соответствующей моды колебаний. Следовательно, анализ направления собственного вектора моды колебаний, частота которой при деформации обращается в нуль, позволяет определить направление неустойчивого движения атомов кристалла, приводящее к его разрушению, т. е. исследовать механизм разрушения кристалла.

В настоящей работе эта идея применена для исследования механизма разрушения ГЦК-решетки серебра при деформации сдвига (111)  $\langle 1\bar{2}1 \rangle$  и определения направления неустойчивого смещения атомов в кристалле при нарушении динамического условия устойчивости.

Схема расположения атомов и схема моделирования деформации сдвига приведены на рис. 1. Плотноупакованные плоскости (111) ГЦК-решетки в недеформированном состоянии расположены параллельно плоскости Y = 0, кристаллографические направления [121] и [101] ориентированы вдоль осей координат 0X и 0Z соответственно. Деформация сдвига осуществляется путем наклона кристаллографического направления [111] в сторону оси 0X, при этом атомные плоскости (111) сдвигаются параллельно вдоль оси 0X, величина сдвига характеризуется углом сдвига  $\gamma$  между направлением [111] и осью 0Y.

В качестве модели межатомного взаимодействия использована разработанная авторами модель [3], основанная на методе внедренного атома [4]. В зависимости от угла сдвига  $\gamma$  были рассчитаны фононные спектры для



**Рис. 1.** Схема моделирования сдвига (111)  $\langle 1\bar{2}1 \rangle$ .

следующих 25 направлений волнового вектора: [001], [010], [100], [110], [1 $\overline{10}$ ], [101], [10 $\overline{1}$ ], [011], [01 $\overline{1}$ ], [111], [11 $\overline{1}$ ], [1 $\overline{11}$ ], [ $\overline{111}$ ], [112], [11 $\overline{2}$ ], [1 $\overline{12}$ ], [121], [121], [121], [1 $\overline{211}$ ], [ $\overline{121}$ ], [211], [21 $\overline{11}$ ], [2 $\overline{111}$ ], [ $\overline{211}$ ]. Анализ фотонных частот в этих направлениях показал, что первыми обращаются в нуль квадраты частот поперечной моды  $T_2$ в направлении [111], независимо от значения модуля волнового вектора (рис. 2, *a*), критический угол сдвига  $\gamma_{\rm crit} \approx 0.15$ .

Для уточнения минимального критического угла сдвига и соответствущего волнового вектора, при котором нарушаются динамические условия устойчивости, были рассчитаны фононные спектры для произвольных направлений волнового вектора в зависимости от сферических координат волнового вектора  $\mathbf{k}(k, \vartheta, \varphi)$ , где k модуль волнового вектора,  $\vartheta$  — угол между вектором  $\mathbf{k}$ и осью 0*Y*, а  $\varphi$  — угол между проекцией вектора  $\mathbf{k}$  на плоскость *X*0*Z* и осью 0*X*.

Так как нарушение динамических условий устойчивости (1) в данном направлении приосходит одновременно независимо от модуля волнового вектора, то ниже приведены результаты расчета для фиксированного значения модуля волнового вектора  $k/k_{\rm max} = 0.1$ .

Результаты расчета фононных спектров для произвольных направлений волнового вектора показали, что первым происходит нарушение динамического условия устойчивости (1) также для моды Т<sub>2</sub> вблизи окрестности направления [111]. На рис. 2, b приведены результаты расчета частот фононов для моды  $T_2$  в зависимости от угла *θ* для волнового вектора **k**, лежащего в плоскости (10 $\overline{1}$ ) ( $\varphi = 0$ ), для значений угла сдвига  $\gamma = 0.1302$ , 0.1304 и 0.1306. Из рис. 2, b видно, что критической является деформация сдвига  $\gamma = 0.1304$ , при которой в нуль обращается частота фононов для направления волнового вектора k с координатами  $\vartheta_{\rm crit} = -7.2^\circ$ и  $\phi = 0^{\circ}$ . Декартовы координаты собственного вектора *е*<sub>*T<sub>2</sub>*</sub>(**k**) равны (0.98922; 0.14643;0). Таким образом, поскольку Z-координата вектора  $e_{T_2}(\mathbf{k})$  равна нулю, то вектор  $e_{T_2}(\mathbf{k})$  лежит в кристаллографической плоскости [101]. Угол наклона вектора  $e_{T_2}(\mathbf{k})$  к плоскости (111) равен 8.42°.

Для того чтобы исследовать условия динамической устойчивости для волнового вектора **k**, не лежащего в плоскости (101), были проведены расчеты значения частоты фононов для моды  $T_2$  в зависимости от угла  $\theta$  в окрестности критического значения  $\vartheta_{\rm crit} = -7.2^{\circ}$  для разных значений угла  $\varphi$ . Результаты расчета для значения  $\gamma_{\rm crit} \approx 0.1304$  приведены на рис. 2, *c*. Из рис. 2, *c* видно, что для волнового вектора **k**, не лежащего в плоскости (101), нарушение динамических условий устойчивости происходит позже, чем для вектора **k**, лежащего в плоскости (101).

На рис. 3 приведено расположение атомов в плоскости  $[10\overline{1}]$  при деформации сдвига со значением  $\gamma_{\rm crit} \approx 0.1304$ , там же показано направление собственного вектора  $e_{T_2}(\mathbf{k})$ . Из рис. 3 видно, что направление



**Рис. 2.** Фононные спектры Аg: a — для направления волнового вектора [111] при угле сдвига  $\gamma_{\rm crit} \approx 0.15$ ; b — для моды  $T_2$  в зависимости от угла  $\theta$  при  $\varphi = 0$  для разных значений угла сдвига  $\gamma(k/k_{\rm max} = 0.1)$ ; c — для моды  $T_2$  в зависимости от угла  $\theta$  для разных значений угла от угла  $\theta$  для разных значений угла  $\varphi$  при значении  $\gamma_{\rm crit} \approx 0.1304$ .

вектора  $e_{T_2}(\mathbf{k})$  с хорошей точностью совпадает с кристаллографическим направлением [232].

Таким образом, наиболее опасное направление движения атомов в кристалле при деформации сдвига (111)



Рис. 3. Наиболее опасное направление сдвига.

 $\langle 1\bar{2}1 \rangle$ , приводящее к структурной неустойчивости, не полностью совпадает с направлением  $\langle 1\bar{2}1 \rangle$ , лежащим в плоскости (111), а имеет перпендикулярную составляющую в направлении [111], поэтому при деформации сдвига (111)  $\langle 1\bar{2}1 \rangle$  должно происходить увеличение межплоскостного расстояния между плотноупакованными плоскостями (111).

### Список литературы

- [1] Борн М., Кунь Х. Динамическая теория кристаллических решеток. М.: ИЛ, 1958. 488 с.
- [2] Марадудин А., Монтролл Э., Вейсс Дж. Динамическая теория кристаллической решетки в гармоническом приближении. М.: Мир, 1965. 383 с.
- [3] Бедарев С.Н., Рудер Д.Д. // Изв. АлтГУ. 2007. № 1 (43). С. 87–89.
- [4] Daw M.S., Baskes M.I. // Phys. Rev. B. 1984. Vol. 29. P. 6443– 6453.