$E_{g}^{06;07;12}$ Корреляция частоты колебания $E_{g}(1)$ и полуширины пика (101) на рентгенограмме наноразмерных частиц анатаза TiO₂

© Ю.М. Шульга, Д.В. Матюшенко, Е.Н. Кабачков, А.М. Колесникова, Е.Н. Куркин, И.А. Домашнев, С.Б. Бричкин

Институт проблем химической физики РАН, 142432 Черноголовка, Московская область, Россия e-mail: shulga@icp.ac.ru

(Поступило в Редакцию 5 марта 2009 г.)

Установлено, что частота колебания $E_g(1)$ в спектре комбинационного рассеяния наноразмерных частиц анатаза TiO₂ растет линейным образом с ростом полуширины пика (101) на их рентгенограмме.

Известно, что спектр комбинационного рассеяния (КР) для частиц полупроводниковых материалов меняется при изменении их размеров в нанометровой области (см., например, работы [1–3] и ссылки к ним). Однако для каждого конкретного случая вид этой зависимости может иметь свои особенности, определяемые элементным и фазовым составом материала, а также дисперсией размеров частиц.

Целью настоящей работы является изучение экспериментальной зависимости положения наиболее интенсивного пика в спектре КР-частиц анатазной модификации TiO_2 от полуширины пика (101) на соответствующей порошковой рентгенограмме — $\delta(2\Theta_{101})$. Актуальность такой задачи обусловлена, прежде всего, практическим использованием оксида титана в качестве основы фотокатализаторов, химических сенсоров, диэлектрического материала в конденсаторах и для других целей [4–15].

В спектре комбинационного рассеяния анатаза можно наблюдать 3 E_g пика, которые располагаются при 144, 197 и 639 см⁻¹ (в работе [16] они обозначены как $E_g(1)$, $E_g(2)$ и $E_g(3)$ соответственно), 2 B_{1g} пика (399 и 519 сm⁻¹) и A_{1g} пик (513 сm⁻¹). Пики, расположенные вблизи 513 и 519 сm⁻¹, разрешаются только при низкой температуре [17], а пик $E_g(2)$ имеет относительно малую интенсивность. Таким образом, наибольшей информативностью обладают пики, расположенные при 144, 399 и 639 сm⁻¹. Из них наиболее интенсивным является пик $E_g(1)$.

В принципе, влияние размера частиц (D) на частоту (ν) колебания $E_g(1)$ наноразмерного анатаза уже изучалось. Так, например, в работе [16] были измерены спектры 4 образцов со средним размером частиц 4, 8, 20 и 34 nm соответственно и установлено, что величина ν ($E_g(1)$) растет с уменьшением размера частиц. Похожие зависимости были получены в работах других авторов [18–24]. Во всех случаях для определения среднего размера частиц авторы использовали рентгенограммы исследуемых образцов и формулу Шерера: $D_{hkl} = k\lambda/\beta_{hkl} \cos \Theta_{hkl}$, где k — константа, которая для кубической решетки близка к единице, λ — длина волны рентгеновского излучения, Θ_{hkl} — дифракционный угол, β — полуширина дифракционного пика (в радианах). При этом, как правило, не сообщалось, учитывался или нет вклад в полуширины дифракционных пиков микронапряжений. Предполагалось также, что все образцы были однофазными, что в случае нанодисперсных порошков часто нельзя утверждать однозначно вследствие присутствия рентгеноаморфной составляющей. Наконец, вклад в полуширину дифракционного пика вносит также приборная функция (ширина щелей, рентгеновский источник, шумы приемника и усилителя и пр.), которая может заметно отличаться для разных приборов. Учет такого рода систематических ошибок, как правило, также отсутствует в упомянутых работах.

Нами было решено изучить корреляцию двух экспериментальных измеряемых величин $\delta(2\Theta_{101})$ и ν ($E_g(1)$) для большого числа образцов, причем образцы с небольшой примесью рутила (до 30%) также не исключались из рассмотрения.

Основная часть образцов (1-19) диоксида титана была синтезирована в ИПХФ РАН золь-гель методом. Исходную гидролизную смесь получали методом управляемого гидролиза TiCl₄ с последующей нейтрализацией NaOH в охлаждаемом реакторе при температуре $30-38^{\circ}$ С. Выпаривание досуха производилось на плитке в графитовых тиглях при постоянном помешивании. После этого в тех же тиглях происходил отжиг при заданной температуре. Отмывка TiO₂ от хлорида натрия проводилась дистиллированной водой на воронке Бюхнера водоструйным насосом, дальнейшая сушка осуществлялась на воздухе при комнатной температуре.

Несколько образцов (11, 12) было получено путем разложения TiCl₄ в токе CBЧ-разряда в кислородсодержащей атмосфере. Подробности плазмохимического синтеза описаны в работе [25].

Образец 13 был закуплен (торговая марка Hambicat). Происхождение трех образцов (14–16) не установлено.

Все рентгенограммы были записаны на приборе ДРОН АДП-2-02 (монохроматическое Си K_{α} -излучение). Полуширину дифракционного пика (101) $\delta(2\Theta)$ определяли как полуширину подгоночного гауссиана, описывающего профиль пика с линейной аппроксимацией фона. Описание профиля этого дифракционного пика с помощью функции Лоренца было менее удовлетворительным, особенно при больших значениях полуширины. Отметим, что β_{101} определяли как $\beta_{101} = {\pi \times \delta(2\Theta_{101})}/{180}$.

Спектры комбинационного рассеяния (КР) возбуждали лазерным излучением с $\lambda = 976$ nm и регистрировали с помощью прибора NXT FT-Raman 9650. Положение максимума пика определяли с использованием программы OMNIC. Воспроизводимость измеряемого значения ν ($E_g(1)$) для одного и того же материала в течение времени выполнения настоящей работы укладывалась в пределы ± 0.1 cm⁻¹.

На рис. 1 представлена зависимость $v(E_g(1))$ от $\delta(2\Theta_{101})$ для изученных образцов. Видно, что наблюдаемую зависимость можно описать прямой линией $v(E_g(1)) = k \times \delta(2\Theta_{101}) + A$, где $k = 6.101 \pm \pm 0.428$ сm⁻¹deg⁻¹, $A = 142.47 \pm 0.30$ сm⁻¹. Прежде всего, обращает на себя внимание то обстоятельство, что отклонение экспериментальных точек от среднестатистической зависимости нельзя приписать недостаточно высокой точности эксперимента. Отсюда следует, что небольшой сдвиг пика $E_g(1)$ в спектре комбинационного рассеяния не обязательно означает, что изменился размер частицы TiO₂. Факторами, влияющими на положение пика $E_g(1)$, могут быть, например, вакансии в кислородной подрешетке, внутренние микронапряжения, состояние поверхности частиц и т.п.

По физическому смыслу значение A должно совпадать с положением пика $E_g(1)$ в хорошо закристаллизованном порошке анатаза [$\delta(2\Theta_{101}) = 0$]. В литературе, однако, часто сообщается, что пик $E_g(1)$ в анатазе расположен при 144 сm⁻¹ (см., например, [19–21]). Скорее всего, значение 144 сm⁻¹ — это дань исторической традиции, связанной с необходимостью различать положения пиков $E_g(1)$ в анатазе и B_{1g} в рутиле. С другой стороны, понятно также, что дифракционный пик с нулевой полушириной — это также абстракция. Однако полученные нами данные позволяют утверждать, что экспериментально определенное значение 143 сm⁻¹

Рис. 1. Зависимость положения пика $E_g(1)$ в спектре КР от полуширины дифракционного максимума $\delta(2\Theta_{101})$ для изученных образцов диоксида титана (анатазная модификация).

Рис. 2. Зависимость D_{101} от ν ($E_g(1)$).

для пика $E_g(1)$ в хорошо закристаллизованном анатазе нельзя *а priori* считать ошибкой. Отметим здесь, что в публикациях, посвященных спектрам КР диоксида титана, можно найти значение 142 сm⁻¹ для ν ($E_g(1)$) в анатазе [18].

Заметные сдвиги максимума пика $E_g(1)$ можно вполне обоснованно связывать с изменением среднего размера частиц анатаза. В этом случае желательно иметь методику экспресс-оценки наблюдаемого эффекта. Для этой цели линейная зависимость $v(E_g(1)) = k \times \delta(2\Theta_{101}) + A$ с определенными выше численными значениями коэффициентов k и A с помощью уравнения Шерера была перестроена в зависимость $D_{101} = D_{101}(v(E_g(1)))$ (рис. 2). При этом преобразовании считалось k = 0.9 и $\lambda = 0.154$ nm.

Видно, что зависимость, представленная на рис. 2, будет давать не надежные оценки размера частиц при ν ($E_g(1)$) < 144 сm⁻¹. При малых размерах частиц анатаза (менее 10 nm) контрастность дифракционной картинки резко падает. Возможно, что более надежные оценки относительного размера частиц в этом случае можно получить при использовании спектров КР. Рис. 2 также свидетельствует о том, что вид зависимости положения пика $E_g(1)$ в спектре КР анатаза от размера частиц трудно установить экспериментально при ограниченном числе точек.

Список литературы

- Manciu F.S., Sahoo Y., Carreto F., Prasad P.N. // J. Raman Spectrosc. 2008. Vol. 39. P. 1135.
- [2] Swamy V. // Phys. Rev. B. 2008. Vol. 77. P. 195 414.
- [3] Liang L.H., Shen C.M., Chen X.P. et al. // J. Phys.: Condens. Matter. 2004. Vol. 16. P. 267.
- [4] O'Regan B., Grätzel M. // Nature. 1991. Vol. 353. P. 737.
- [5] Pawlewicz W.T., Exarhos G.J., Conaway W.E. // Appl. Opt. 1983. Vol. 22. P. 1837.
- [6] Kormann C., Bahnemann D.W., Hoffmann M.B. // J. Phys. Chem. 1988. Vol. 92. P. 5196.

- [7] Kamat P.V., Dimitrijevic N.M. // Sol. Energy 1990. Vol. 44. P. 83.
- [8] Kimer U., Schierbaum K.D., Gopel W. et al. // Sensors and Actuators B. 1990. Vol. 1. P. 103.
- [9] Desu S.B. // Mater. Sci. Eng. B. 1992. Vol. 13. P. 299.
- [10] Takao Y, Iwanaga Y, Shimizu M. et al. // Sensors and Actuators B. 1993. Vol. 10. P. 229.
- [11] Lobl P, Huppertz M, Mergel D. // Thin Solid Films. 1994. Vol. 251. P. 72.
- [12] Ha H.K., Yosimoto M., Koinuma H. et al. // Appl. Phys. Lett. 1996. Vol. 68. P. 2965.
- [13] Natarajan C., Nogami G. // J. Electrochem. Soc. 1996. Vol. 143. P. 1547.
- [14] Gao L., Li Q., Song Z., Wang J. // Sensors and Actuators B. 2000. Vol. 71. P. 179.
- [15] Grätzel M. // Nature. 2001. Vol. 414. P. 338.
- [16] Swamy V, Kuznetsov A, Dubrovinsky L.S. et al. // Phys. Rev. B. 2005. Vol. 71. P. 184 302.
- [17] Mikami M., Nakamura S., Kitao O., Arakawa H. // Phys. Rev. B. 2002. Vol. 66. P. 155 213.
- [18] Kelly S., Pollak F.H., Tomkiewicz M. // J. Phys. Chem. B. 1997. Vol. 101. P. 2730.
- [19] Barsani D., Lottici P.P., Ding X.-Z. // Appl. Phys. Lett. 1998. Vol. 72. P. 73.
- [20] Zhang W.F., He Y.L., Zhang M.S. // J. Phys. D. 2000. Vol. 33. P. 912.
- [21] Barbaroni E., Kholmanov I.N., Piseri P. // Appl. Phys. Lett. 2002. Vol. 81. P. 3052.
- [22] Li Bassi A., Cattaneo D., Russo V. // J. Appl. Phys. 2005. Vol. 98. P. 074 305.
- [23] Zhu K.-R., Zhang M.-S., Chen Q., Yin Z. // Phys. Lett. A. 2005. Vol. 340. P. 220.
- [24] Lei Y., Zhang L.D., Fan J.C. // Chem. Phys. Lett. 2001. Vol. 338. P. 231.
- [25] Куркин Е.Н., Шульга Ю.М., Домашнев И.А. и др. // Альтернативная энергетика и экология. 2007. № 8. С. 27.