09;12 Моделирование эксперимента по регистрации частиц ультравысоких энергий с учетом структуры приповерхностного слоя лунного грунта

© Г.А. Гусев, Б.Н. Ломоносов, Н.Г. Полухина, В.А. Рябов, В.А. Царев, В.А. Чечин

Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия e-mail: ryabov@x4u.lebedev.ru

(Поступило в Редакцию 11 февраля 2009 г.)

Исследованы возможности эксперимента ЛОРД по регистрации радиосигналов от каскадов, порожденных космическими лучами ультравысокой энергии при их взаимодействии с лунным реголитом. В результате моделирования Монте-Карло показано, что при случайно распределенной толщине реголита в интервале от 2 до 12 m регистрация отраженных от нижней границы реголита радиосигналов для частиц с энергией $W \ge 10^{20}$ eV увеличивает число регистрируемых полезных событий в несколько раз. Дополнительный вклад регистрации отраженного радиоизлучения приводит к существенному увеличению научного потенциала эксперимента ЛОРД.

Введение

Изучение природы и спектров космических лучей (КЛ) с максимально достижимыми в природе (ультравысокими) значениями энергии является одной из наиболее актуальных задач современной науки. Информация об этих частицах важна для решения фундаментальных проблем астрофизики и физики элементарных частиц, касающихся источников и механизмов ускорения КЛ, природы темной материи. Следует подчеркнуть, что регистрация таких частиц открытвает новый канал для исследования Вселенной. Вместе с тем эта область значений энергии находится вне досягаемости земных ускорителей, и исследование космических лучей ультравысоких энергий дает уникальную возможность изучения физики частиц при столь высоких энергетических масштабах.

Основная трудность регистрации КЛ и нейтрино ультравысоких энергий связана с редкостью этих событий, поскольку поток таких частиц при энергии $W \ge 10^{20}$ eV очень мал и составляет одну частицу на 100 km² в год. Для регистрации таких частиц необходимы детекторы с огромными объемами и площадями.

В проекте эксперимента ЛОРД (Лунный орбитальный радиодетектор) [1,2] используется радиометод регистрации [3,4] с окололунного спутника когерентного радиоизлучения от каскадов, инициированных частицами ультравысоких энергий при их вазимодействии с лунным реголитом.

Приповерхностный лунный грунт (рис. 1) состоит из слоя реголита и подложки [5]. Реголит — агрегатный сой мелких частиц и небольших камней, выброшенных при ударах метеоритов о поверхность Луны. Он состоит в основном из силикатов с добавками метеорного железа и титана (несколько процентов), типичная глубина z = 2-12 m (местами до 100 m). Диэлектрическая постоянная реголита $\varepsilon \approx 3$, плотность $\rho \approx 1.7$ g/cm³, длина поглощения радиоволн с частотой 2 GHz $\Lambda \approx 9$ m. Под слоем реголита находится более плотная порода, похо-

жая на земной базальт, с диэлектрической постоянной $\varepsilon = 6-9$.

Радиоизлучение генерируется каскадом от первичной частицы (КЛ или нейтрино) в области углов вблизи черенковского конуса в широком частотном диапазоне — частотные спектры радиосигналов простираются от десятков килогерц до 1–2 GHz. В предыдущих работах по моделированию эксперимента ЛОРД [6] рассматривалось когерентное поле излучения каскадов в реголите только от верхней части конуса — часть этого излучения после преломления на границе реголит—вакуум выходит из лунного грунта и может быть зарегистрирована в окололунном пространстве (рис. 1). Радиоизлучение такого типа в дальнейшем будем называть прямым радиоизлучением.

В настоящей работе наряду с прямым радиоизлучением рассматривается излучение, направленное в глубь Луны. В этом случае радиоизлучение после отражения на границе реголит—подложка (1-3) и преломления на границе реголит—вакуум (1, 2) также будет выходить в окололунное пространство. Каскад от КЛ, который зарождается на небольшой глубине 0.5-1 m, порождает прямое радиоизлучение и с некоторой временной задержкой — отраженный от подложки запаздывающий радиосигнал.

Рис. 1. Структура приповерхностного лунного грунта (*1* — реголит, *2* — вакуум, *3* — подложка реголита). Прямое и отраженное (пунктир) радиоизлучение; *4* — космические лучи.

Целью настоящей работы является моделирование эксперимента ЛОРД по регистрации прямого и отраженного радиоизлучения от каскадов, порожденных КЛ ультравысоких значений энергии при их взаимодействии с лунным реголитом, и распространения радиосигнала с учетом структуры приповерхностного лунного грунта, параметров антенны, поляризации черенковского радиоизлучения и тепловых шумов.

Процедура моделирования регистрации прямых и отраженных радиосигналов методом Монте-Карло в эксперименте ЛОРД

В работе [6] были показаны возможности использования метода Монте-Карло для решения задачи регистрации КЛ и нейтрино ультравысоких энергий радиометодом с окололунного спутника в разрабатываемом эксперименте ЛОРД. Отбор полезных событий осуществлялся по превышению пороговой напряженности поля $E_{\rm th}$ в частотном представлении. Кроме того, модель была предназначена для регистрации прямого радиоизлучения и без учета свойств антенной системы. Для дальнейшего исследования регистрации радиоизлучения была разработана математическая модель во временном представлении, в которой учитывались:

— регистрация прямых и отраженных радиосигналов для случайной толщины лунного реголита;

- свойства антенной системы;
- поляризация радиоизлучения;
- внешние и аппаратурные тепловые шумы.

1.1. Модель антенной системы

На окололунном спутнике на высоте h расположены две идентичные антенны A1 и A2, смещенные на расстоянии B (~ 10 m). Диаграммы направленности антенн ориентированы на центр Луны (рис. 2). Каждая антенна характеризуется двумя ортогональными линейными поляризациями (Е и Н). Диаграмма направленности каждой антенны охватывает видимую поверхность Луны. Телесный угол антенны Ω_A для заданной высоты h, которому соответствует θ_{nad}^{max} — угол между направлением на центр и касательной к Луне из точки наблюдения, вычисляется интегрированием по углу при вершине θ_{nad} :

$$\Omega_A = 2\pi \int\limits_{\cos heta_{
m nad}}^1 d\cos heta_{
m nad} = 2\pi ig(1-\cos heta_{
m nad}^{
m max}ig) = rac{4\pi}{G_a},$$

где G_A — коэффициент усиления антенны, θ_{nad} — половинный надирный угол,

$$\cos\theta_{\rm nad}^{\rm max} = \sqrt{1 - \left(\frac{R_0}{R_0 + h}\right)^2}$$

— косинус надирного угла, $R_0 = 1740 \,\mathrm{km}$ — радиус Луны. В соответствии с приведенным выше выражением

Рис. 2. Схема лунного эксперимента ЛОРД, 1 — КЛ.

усиление антенны для заданной высоты *h* должно составлять

$$G_A = rac{2}{1 - \cos heta_{
m nad}^{
m max}}$$

Пусть частотный диапазон антенны лежит в области частот от f_L до f_H . Напряженность электрического поля E_f в полосе частот Δf индуцирует напряжение V_S в приемной антенне $V_S = l_{\text{eff}} E_f \Delta f$, где l_{eff} — эффективная длина антенны, E_f — напряженность электрического поля (в $\mu V \cdot m^{-1} M H z^{-1}$), $\Delta f = (f_H - f_L)$ — ширина полосы частот (в MHz). Величина l_{eff} может быть рассчитана в виде

$$l_{\rm eff} = 2 \sqrt{\frac{Z_A A_{\rm eff}}{Z_0}} = \sqrt{\frac{Z_A G_A}{Z_0 \pi}} \frac{c}{f}, \label{eff}$$

где $Z_A = 50 \,\Omega$ — импеданс излучения антенны, $Z_0 \approx 377 \,\Omega$ — импеданс свободного пространства, $A_{\rm eff}$ — эффективная площадь антенны, c — скорость света. Для антенн с постоянным коэффициентом усиления во всем частотном диапазоне $G_A(f) = \text{const}$ эффективная высота антенны является функцией частоты. Передаточная функция антенны выражается как $H_A(f) = l_e(f)H_{BF}(f)$, где $H_{BP}(f)$ — амплитудно-частотная характеристика полосового фильтра в частотном диапазоне $f_L - f_H$ (к примеру, фильтр Баттерворта *n*-го порядка).

1.2. Модель тепловых шумов

Уровень тепловых шумов ограничивает чувствительность детектирования. Системный шум состоит из шумов антенны T_A и приемника T_{REC} , выраженных в единицах температуры. Антенна воспринимает тепловое излучение поверхности Луны с температурой T_{MOON} и из галактического пространства с температурой T_{SKY} . Пренебрегая галактическим шумом, который антенна "видит" в основном боковыми и задними лепестками, принимаем, что на входе приемного устройства присутствует суммарный шум с температурой $T_{SYS} = T_{MOON} + T_{REC}$. Флуктуация напряжения V_n (или среднеквадратическое

отклонение σ_n) на входе антенны составляет

$$V_n\equiv\sigma_n=\sqrt{4kT_{
m SYS}Z_A\Delta f}$$
 .

Также введем отношение полезного сигнала к среднему квадратическому отклонению шума

$$S_N = rac{V_s}{V_n} = rac{l_{
m eff} E_{
m th} \Delta f}{\sigma_n}.$$

1.3. Алгоритм моделирования

Схема алгоритма моделирования (рис. 3) разбита на отдельные функциональные блоки (1-10). В соответствии с введенными параметрами моделирования в блоке (1) рассчитываются пороги детектирования как по величине напряженности электрического поля $E_{\rm th}$, так и по напряжению порога $V_{\rm th}$:

$$E_{\rm th} = \frac{S_N \sigma_n}{l_{\rm eff} \Delta f} = S_N \frac{\sigma_n}{\sqrt{\frac{Z_a G_A}{Z_0 \pi} \frac{c}{f_{\rm C}}}} \left[\mu \mathbf{V} \cdot \mathbf{m}^{-1} \mathbf{M} \mathbf{H}_z^{-1} \right] \quad \mathbf{m}$$

$$V_{\rm th} = S_N \sigma_n \, [\mu {\rm V}],$$

где $f_C = (f_L + f_H)/2$ — средняя частота рабочего диапазона.

Рис. 3. Схема алгоритма моделирования эксперимента ЛОРД. 1 — параметры эксперимента; 2 — вычисление числа симуляций; 3 — генерация массивов первичных и вторичных параметров; 4 — предварительный отбор кандидатов в частотной области; 5 — формирование массивов кандидатов на полезное событие; 6 — начало отбора полезных событий; 7 — преобразование частотной области во временную; 8 отбор полезных событий; 9 — запись в массив полезных событий; 10 — анализ результатов моделирования; С1 — "Наличие кандидатов?"; С2 — "Наличие триггера"; С3 — "Конец отбора?".

Определяется число частиц $N_{\rm IN}$ с энергией $W = [W_{\rm min}, \infty]$, падающих за время экспозиции $T_{\rm exp}$ на видимую поверхность Луны с высоты h (блок 2).

$$N_{\rm IN} = S_M \Delta \Omega_0 \int_{W_{\rm min}}^{\infty} dJ(W) dW T_{\rm exp} = 2\pi^2 R_0^2 \frac{h}{R_0 + h} \frac{2 \cdot 10^{30}}{2W_{\rm min}^2} T_{\rm exp}$$

В блоке (3) генерируются шесть массивов случайных параметров $\{W, \theta_n, \varphi_n, \theta_S, \varphi_S, z\}$ с размерностью $[1 \times N_{IN}]$:

$$W = W_{\min} / \sqrt{\text{rand}(1, N_{\text{IN}})},$$

$$\cos \theta_n = \sqrt{\text{rand}(1, N_{\text{IN}})},$$

$$\varphi_n = 2\pi (\text{rand}(1, N_{\text{IN}}) - 0.5),$$

$$\cos \theta_S = \cos \theta_S^{\max} + (1 - \cos \theta_S^{\max}) \text{rand}(1, N_{\text{IN}}),$$

где $\cos heta_S^{\max} = R_0/(R_0+h),$

$$\varphi_S = 2\pi (\text{rand}(1, N_{\text{IN}}) - 0.5),$$
$$z = z_{\min} + (z_{\max} - z_{\min}) \text{rand}(1, N_{\text{IN}})$$

Здесь W — энергия первичной частицы, θ_n и φ_n — угол прихода частицы относительно локальной нормали **n**, а θ_S и φ_S — сферические координаты точки падения частицы на поверхности Луны, z — глубина реголита в точке падения, а $(z_{\min}-z_{\max})$ — толщина слоя реголита, функция rand(m, n) формирует массив размеров $m \times n$, элементами которого являются случайные величины, распределенные по равномернуом закону в интервале (0,1).

).

В соответствии с геометрией регистрации вычисляются массивы вторичных параметров: коэффициенты отражения $(R_{12}^{\parallel}, R_{13}^{\parallel}, R_{12}^{\perp}, R_{13}^{\perp})$ и прохождения $(T_{12}^{\parallel}, T_{12}^{\perp})$ излучения на границах раздела (1-2, 1-3), и вспомогательные параметры $(R_S(\theta_S), \cos \theta_i, \cos \theta_r, \cos \theta)$, где $R_S(\theta_S)$ — расстояние от детектора (на высоте h) до точки на поверхности, θ_i и θ_r — уголы падения и преломления радиоволн на поверхности, θ — угол между направлением падения частицы и направлением излучения.

Рассчитанное число падающих частиц на видимую поверхность Луны $N_{\rm IN}$ достигает нескольких миллионов. Отбор "кандидатов" (блок 4) с целью сокращения количества вычислений осуществляется по превышению величины напряженности поля E_{ω} минимальной напряженности поля — $E_{\rm min} \approx 0.1 E_{\rm th}$. Величина поля $E_{\omega}(W, \theta_n, \varphi_n, \theta_S, \varphi_S, z, f_C)$ вычисляется на средней частоте f_C для каждой точки падения частиц на расстоянии $R_S(\theta_S)$ от радиодетектора.

В результате предварительного отбора $(E_{\omega}(f_C) \ge E_{\min})$ формируется массив индексов $I[N_I]$, где число кандидатов N_I на два-три порядка меньше исходного числа симуляций N_{IN} . Если количество кандидатов $N_I \ge 1$, то это означает продолжение поиска полезных событий, в противном случае осуществляется возврат к началу моделирования.

Рис. 4. Пример одновременной регистрации прямого и отраженного сигналов (два окна справа) двумя антеннами A1 и A2 с поляризацией **H** при моделировании методом Монте-Карло; цифрой *I* обозначена задержка сигнала на верхней антенне A2 относительно нижней антенны A1, 2 — запаздывание отраженного сигнала относительно прямого.

Блоки (6-9) — цикл анализа кандидатов и отбора полезных событий во временной области. В блоке (7) для каждого индекса из массива I[N_I] вычисляется частотный спектр напряженности поля с учетом передаточной функции антенны, ее поляризационной ориентации и поляризации радиоизлучения. Обратным преобразованием Фурье вычисляются радиосигналы во временном представлении (в области t) для каждой поляризации (Е и Н) антенн (А1 и А2). Радиосигналы суммируется во временном представлении со случайным шумом, описываемым распределением Гаусса. Отбор полезных событий осуществляется по превышению порога $V_{\rm th} = S_N \sigma_n$ в двух антеннах для любой поляризации (Е или Н) во временном окне T_W. Длительность временного окна $T_W = \Delta t^{\text{max}} = B/c$ соответствует максимальной задержке распространения радиоизлучения от антенны А1 к антенне А2. Сигнал в антенне А2 запаздывает относительно антенны А1 на величину, определяемую углом прихода излучения θ_{nad} :

$$\Delta t = \frac{B\cos\theta_{\rm nad}}{c}$$

Логика триггера:

$$\begin{aligned} \text{Trigger} &= \left[\left(|V_A^E(t)| \ge V_{\text{th}} \right) \& \left(|V_{A2}^E(t+T_W)| \\ \ge V_{\text{th}} \right) \right] \lor \left[\left(|V_{A1}^H(t)| \ge V_{\text{th}} \right) \& \left(|V_{A2}^H(t+T_W)| \ge V_{\text{th}} \right) \right] \end{aligned}$$

Если это выражение истинно, то формируется триггерный сигнал, по которому событие, в данном случае значение его индекса, записывается в массив индексов полезных событий для дальнейшего анализа (блок 10).

2. Результаты моделирования

В соответствии с рассмотренным алгоритмом была разработана программа моделирования в среде MaTLaB с графическим интерфейсом. Ниже приводятся некоторые результаты моделирования регистрации КЛ с дифференциальным спектром $J \sim W^{-3}$ при следующих параметрах: h = 700 km, $T_{\rm EXP} = 1$ год, SNR = 6, B = 10 m, $W_{\rm min} = 10^{19}$ eV, z = 2-12 m.

В таблице приведено суммарное число зарегистрированных полезных событий $N_{\rm EV}$ от прямых и отраженных радиосигналов для различных частотных диапазонов f = 200-400 MHz. Отдельно показан вклад в полезные события от прямых (N_D) и отраженных (N_R) радиосигналов, а также от одновременной регистрации прямых

Число зарегистрированных полезных событий от прямых и отраженных радиосигналов в зависимости от частотного диапазона регистрации

N⁰	f_L , MHz	f_H , MHz	Δf , MHz	N_R	N_D	N _{DR}	$N_{\rm EV}$
1	200	400	200	90	365	19	474
2	200	350	150	87	345	15	447
3	250	400	150	55	275	13	343
4	200	300	100	97	257	17	371
5	250	350	100	47	213	10	270
6	300	400	100	24	167	3	194
7	200	250	50	80	166	12	258
8	250	300	50	34	121	5	160
9	300	350	50	14	122	3	139
10	350	400	50	6	80	0	86

и отраженных сигналов (*N*_{DR}). Из таблицы следует следующее.

1. Число зарегистрированных отраженных сигналов в 2-3 раза превышает число зарегистированных прямых $(N_R > N_D)$.

2. Одновременная регистрация прямого и отраженного сигналов — явление достаточно редкое и сотавляет не более 5% от общего количества зерегистрированных событий. Пример одновременной регистрации приведен на рис. 4.

3. Число регистрируемых событий $N_{\rm EV}$ снижается с повышением нижней границы частотного диапазона f_L от 200 до 350 MHz. Так, например, при частотной полосе $\Delta f = 50$ MHz число регистрируемых прямых сигналов снижается почти на порядок, в то время как число регистрируемых отраженных сигналов снижается ориентировочно в два раза.

4. С увеличением полосы частот от 50 до 200 MHz, при неизменной нижней частоте частотного диапазона $(f_L = 200 \text{ MHz})$, вклад отраженных сигналов по отношению к количеству регистрируемых прямых сигналов возрастает почти в два раза.

На рис. 5 приведен пример распределения зарегистрированных событий от космических лучей по видимой поверхности Луны с высоты орбиты 700 km при частотном диапазоне 200–400 MHz. Наглядно видно, что отраженное излучение может быть зарегистрировано не только из окрестности либма Луны в пределах 10⁰ как в случае регистрации прямого излучения, но и из центральной области лунной поверхноости, т.е. при меньших углах падения КЛ (почти вертикальных) относительно нормали в точках падения. Число зарегистрированных событий в интервалах энергии (за один год экспозиции) от КЛ ультравысокой энергии приведено на рис. 6.

Рис. 5. Распределение зарегистрированных событий по азимутальному углу φ_s и тангенсу надирного угла tg θ_{nad} по видимой поверхности Луны с высоты 700 km (обозначения координат зарегистированных событий: кружки — прямое радиоизлучение, квадраты — отраженное, кресты — одновременная регистрация прямого и отраженного радиоизлучения).

Рис. 6. Количество зарегистрированных событий за один год от КЛ. Белые столбики соответствуют событиям от прямых радиосигалов, черные — событиям от отраженных радиосигналов (высота орбиты 700 km, частотный диапазон 200–400 MHz).

Заключение

В работе проведено моделирование Монте-Карло эксперимента ЛОРД по регистрации прямых и отраженных радиосигналов от каскадов, порожденных КЛ ультравысоких энергий при их взаимодействии с лунным реголитом с учетом структуры приповерхностного лунного грунта. В результате моделирования выявлено, что при распределенной случайно толщине реголита в интервале от 2 до 12 метров регистрация наряду с прямыми отраженных радиосигналов от КЛ с энергией $W > 10^{20} \, \text{eV}$ увеличивает суммарное число регистрируемых полезных событий в несколько раз. Это обусловлено наличием отраженных от границы реголит-базальт сигналов от первичных частиц, приходящих на поверхность Луны в более широком диапазоне углов прихода относительно нормали в точке падения (включая почти вертикальные углы), по сравнению с узким диапазоном углов прихода прямых сигналов, которые в большинстве случаев порождаются почти горизональными частицами. Дополнительный вклад регистрации отраженного радиоизлучения приводит к сущестенному увеличению научного потенциала эксперимента ЛОРД.

Список литературы

- [1] Гусев Г.А., Ломоносов Б.Н., Пичхадзе К.М. и др. // Космические исследования. 2006. Т. 44. № 1. С. 22–44.
- [2] Гусев Г.А., Ломоносов Б.Н., Пичхадзе К.М. и др. // Докл. РАН. 2006. Т. 406. № 3. С. 327.
- [3] Аскарьян Г.А. // ЖЭТФ. 1961. Т. 41. С. 616.
- [4] Аскарьян Г.А. // ЖЭТФ. 1965. Т. 48. С. 988.
- [5] James C.W., Protheroe R.J. (arXiv:0802.3562[astro-ph]).
- [6] Гусев Г.А., Ломоносов Б.Н., Полухина Н.Г. и др. // Математическое моделирование. 2008. Т. 20. № 6. С. 67–78.

102