01;04;12 Динамика развития субнаносекундного импульсного электрического пробоя газовых промежутков в случае равномерной предионизации газа

© С.Н. Иванов, В.В. Лисенков

Институт электрофизики УрО РАН, 620016 Екатеринбург, Россия e-mail: stivan@iep.uran.ru

(Поступило в Редакцию 23 апреля 2009 г.)

Проведены экспериментально-теоретические исследования процессов инициирования и развития пробоя сильноперенапряженных газовых промежутков импульсами напряжения с фронтом ≤ 1 ns. Проанализировано распространение волн ионизации при равномерном распределении начальных электронов в промежутке. Результаты расчета находятся в качественном согласии с экспериментом. Показано, что в результате развития волн ионизации происходит перераспределение электрического поля в разрядном промежутке и у катода на очень короткое (до 100 ps) время формируется область усиленного поля с напряженностью, достаточной для начала эмиссионных процессов и генерации в прикатодной области короткого пучка быстрых электронов.

Введение

В работе [1] методами электронно-оптической хронографии было показано, что пробой сильноперенапряженных газовых промежутков импульсами напряжения с фронтом 1 ns и короче может развиваться двумя путями: свечение, сопровождающее пробой, появляется практически одновременно по всему промежутку или в какой-то его локальной части (во втором случае длительность предпробойной стадии увеличивается примерно на 400 ps). При этом экспериментальные условия (параметры импульса напряжения на промежутке, давление и сорт газа и т.д.) не изменялись, т. е. ситуация от импульса к импульсу носит статистический характер.

В [2] было выдвинуто предположение, что динамика развития разряда в предпробойной стадии сильно зависит от начального распределения свободных электронов в газовом промежутке, и она была проанализирована для случая неравномерного распределения электронов. В представленной работе в качестве начальных условий нами взято равномерное распределение начальных электронов по объему газового промежутка и проведен анализ распространения волн ионизации в предпробойной стадии.

Эксперимент

Эксперименты проводились на установке, созданной на базе малогабаритного генератора импульсов (ГИ) напряжения РАДАН-303 [3] и позволяющей проводить синхронную регистрацию субнаносекундных импульсов высокого напряжения, прикладываемых к газовому промежутку, с электронно-оптической хронографией свечения, сопровождающего предпробойные и пробойные процессы в промежутке. Устройство установки, испытательной камеры и методики проведения экспериментов были подробно описаны в работах [2,4].

В экспериментах использовалась электронно-оптическая камера "АГАТ СФЗМ". Она позволила осуществлять хронографию свечения с разверткой светового процесса (в спектральном диапазоне от 0.4 до 1.2μ m) в направлении, параллельном плоскости электродов.

Электроды были выполнены из меди. Эксперименты проводились в азоте в неоднородном электрическом поле. Конфигурация электродов разрядного промежутка и распределение напряженности электрического поля в нем приведены в [2,4]. На газовый промежуток подавались импульсы напряжения амплитудой 70 kV, фронтом около 1 ns по уровням 0.1-0.9 и шириной на полувысоте около 2 ns (рис. 1). Скорость нарастания напряжения на фронте импульса в этом случае достигала $7 \cdot 10^{13}$ V/s. Измерения проводились только после тренировки поверхности электродов несколькими сотнями импульсов высокого напряжения.

Рис. 1. Импульс высокого напряжения.

Рис. 2. Развернутые во времени фотографии свечения, сопровождающего пробой газовых промежутков шириной 3.55 mm (азот, 4.5 atm). За нуль временной шкалы принят момент появления свечения в промежутке. *В* — граница плазменного слоя у катода.

На рис. 2 представлены некоторые из полученных в эксперименте фотографий свечения, сопровождающего пробой газа (азот, 4.5 atm). На этих фотографиях видно, что пробой начинается практически по всему объему газового промежутка в виде однородного или практически однородного свечения слабой интенсивности. Через 300-500 ps после появления этого свечения в промежутке начинают распространяться более яркие волны ионизации. Назовем такую динамику развития пробоя пробоем "первого" типа. Следует отметить, что такие картинки наблюдаются не всегда. Гораздо чаще свечение начинается в какой-то локальной точке газового зазора или в некоторой его части и затем распространяется в сторону электродов [1,2]. Будем считать такую динамику развития пробоя пробоем "второго" типа. Как уже упоминалось выше, при одних и тех же экспериментальных условиях от импульса к импульсу наблюдается оба типа пробоя, т.е. ситуация носит статистический характер. В рамках настоящей работы постараемся объяснить механизм развития пробоя "первого" типа. Динамика развития пробоя "второго" типа подробно рассмотрена нами в [2].

Моделирование процессов в газе

Фотографии свечения, сопровождающие начальную стадию формирования пробоя, стали основой численной модели физических процессов, имеющих место в газовом зазоре. За физическую основу модели [2] была взята система, состоящая из балансных уравнений для концентраций электронов (n_e) , ионов (n_i) , возбужденных молекул (n_*) и уравнения Пуассона:

$$\frac{\partial n_e}{\partial t} + \frac{\partial n_e v_e(E)}{\partial x} = v_i(E)n_e, \qquad (1)$$

$$\frac{\partial n_i}{\partial t} = \nu_i(E)n_e,\tag{2}$$

$$\frac{\partial n_*}{\partial t} = \nu_e(E)n_e - \frac{n_*}{\tau_r},\tag{3}$$

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{e}{\varepsilon_0} \left(n_e - n_i \right) \tag{4}$$

с граничными условиями на катоде

$$\varphi = 0, \quad j_e = \gamma_i \mu_i E n_i + \gamma_{\rm ph} \int_0^d \frac{n_*}{\tau_r} dx \tag{5}$$

и на аноде

$$\varphi = U_p(t), \tag{6}$$

где φ — потенциал, E — напряженность электрического поля, v_e — скорость дрейфа электронов, μ_i — подвижность ионов, v_i и v_e — частоты ионизации и возбуждения соответственно, γ_i — коэффициент вторичной ион-электронной эмиссии, $\gamma_{\rm ph}$ — коэффициент фотоэмиссии, j_e — плотность электронного тока, τ_r — эффективное время жизни возбужденных состояний. Константы процессов с участием электронов находились с помощью функции распределения электронов по энергиям, полученной в результате моделирования движения электрона методом Монте-Карло. Расчеты проводились для условий, близких к экспериментальным, т.е. для азота при давлении 4 atm и длине межэлектродах аппроксимировалось функцией

$$U_p(t) = \begin{cases} \frac{U_0}{\tau_f} t & t < \tau_f, \\ U_0, & t \ge \tau_f, \end{cases}$$

где $\tau_f = 10^{-9}$ s — длительност фронта нарастания напряжения, $U_0 = 100$ kV — амплитуда импульса напряжения.

В качестве начальных условий было взято равномерное распределение электронов и ионов по объему газового промежутка с концентрацией $n_{e,i} = 10^3 \text{ cm}^{-3}$, которая является фоновой для атмосферного воздуха. При приложении электрического поля к промежутку (расчет проводился в предположении среднего поля в промежутке 300 kV/cm) электроны начинают дрейфовать к аноду.

На рис. 3 и 4 приведены кривые изменения концентрации электронов и напряженности электрического поля в промежутке при развитии разряда. На этих графиках по оси абсцисс отложено расстояние катод–анод. Видно, что на начальной стадии (в первые 0.55 ns), когда концентрация электронов в промежутке сравнительно мала,

Рис. 3. Кривые изменения концентрации электронов в газовом промежутке при развитии разряда в случае однородной предионизации (1 - 0.65, 2 - 0.55, 3 - 0.25 ns). По оси абсцисс отложено расстояние катод (C)-анод (A).

Рис. 4. Кривые изменения напряженности электрического поля в промежутке при развитии разряда в случае однородной предионизации (1 - 0.55, 2 - 0.65, 3 - 0.7 ns). По оси абсцисс отложено расстояние катод (C)-анод (A).

плазменный столб отодвигается от катода на расстояние до 0.25 mm. Концентрация электронов в плазменном столбе (область квазинейтральной плазмы, занимающей основной межэлектродный объем) при этом быстро нарастает (рис. 5, участок кривой A). За счет большей подвижности электронов, по сравнению с ионами, между плазменным столбом и катодом образуется зона, обедненная зарядами, в которой концентрация ионов значительно превышает концентрацию электронов. Ионы частично экранируют внешнее поле, ослабляя его в плазменном столбе и усиливая в прикатодной области. В результате замедляется рост концентрации электронов в столбе (рис. 5, участок кривой B) и одновременно увеличиваются скорость ионизации в прикатодной области. В результате ионизационная волна (граница плазменного столба) быстро (во временном интервале 0.55-0.7 ns от начала процесса) приближается к катоду, формируя катодный слой, обеспечивающий необходимое поступление электронов в разряд. Искажения поля, вызванные некомпенсированным зарядом ионов, исчезают, поле в плазменном столбе возрастает, что приводит к усилению процессов ионизации, и концентрация электронов начинает вновь возрастать (рис. 5, участок кривой C).

Согласно данным расчетам, на временной развертке свечения должна наблюдаться равномерная засветка с нарастающей интенсивностью всего промежутка, за исключением прикатодной области. На рис. 6 приведена компьютерная аппроксимация изображения. В дальнейшем область засветки должна приближаться к катоду.

Такие фоторазвертки наблюдаются в экспериментах. Однако их общее число не превышает 10-15% от

Рис. 5. Концентрация электронов в плазменном столбе в случае однородной предионизации.

Рис. 6. Развитие волн ионизации и свечения в промежутке в случае однородной предионизации. Серый фон — видимое свечение газа.

Журнал технической физики, 2010, том 80, вып. 1

Рис. 7. Развернутые во времени фотографии свечения, сопровождающего пробой газовых промежутков шириной d = 1.42 mm (азот, 40 atm). За нуль временной шкалы принят момент появления свечения в промежутке.

всех полученных фотографий. Гораздо чаще наблюдается пробой "второго" типа [1,2].

К пробою "первого" типа можно отнести и результаты, полученные нами для азота при давлении p = 40 atm [1,5]. Характерная развертка свечения разряда во времени приведена на рис. 7. Яркое свечение быстро (за время < 100 *ps*) заполняет весь промежуток. При этом в деталях рассмотреть на фотографиях самую начальную стадию формирования пробоя (в первые 100 ps) не удается, поскольку ее длительность становится соизмеримой с временным разрешением электроннооптической камеры АГАТ-СФЗФ, использовавшейся в экспериментах. Такую картину также можно объяснить с точки зрения предложенной расчетной модели в предположении однородной предионизации.

Расчеты были проведены для межэлектродного промежутка $d = 1.4 \,\mathrm{mm}$, к которому прикладывался импульс напряжения амплитудой $U_0 = 150 \, \text{kV}$ и фронтом нарастания $au_f = 0.3$ ns. Так же как и в случае 4 atm, у катода формируется слой положительного заряда, искажающий электрическое поле в промежутке. Однако в силу малой толщины (x_c) (рис. 8) он не в состоянии значительно ослабить электрическое поле в плазменном столбе (E_p) . Вместе с тем поле в прикатодной области усиливается до уровня $\sim 10^7$ V/cm, что приводит к резкому нарастанию тока автоэлектронной эмиссии. Когда его величина становится равной току плазменного столба, толщина катодного слоя падает до уровня $x_c \sim 1/\alpha$... (где *α* — коэффициент ударной ионизации). В дальнейшем параметры слоя "самоподстраиваются" так, чтобы ток автоэмиссии был равен току плазменного столба, т.е. разрядному току.

При вычислении тока автоэмиссии нужно иметь в виду, что каждый катод обладает своим коэффициентом усиления электрического поля, обусловленным наличием микроострий. Типичное значение такого коэффициента $\beta \sim 10$, однако для каждого катода он индивидуален. Поскольку для наших условий β не измерялся, то следовало просчитать варианты с коэффициентами

усиления $\beta = 1$, 5, 20, 40. Как показывают расчеты, измерение β влияет в основном только на поле в прикатодной области (E_c) (рис. 9), практически не изменяя качественной картины ионизационных процессов (рис. 8). Таким образом, картина свечения разряда будет качественно соответствовать рис. 6, с той лишь разницей, что темная прикатодная область будет практически не видна вследствие ее малых размеров ($\sim 10^{-2}$ d).

Рис. 8. Зависимости концентрации электронов n_e (*1*-4) и длины прикатодной области x_c (5) от времени при различных коэффициентах усиления поля (β) на катоде: *I* — β = 1; *2* — 5; *3* — 20; *4* — 40.

Рис. 9. Зависимости отношения полей в прикатодной области (E_c) и плазменном столбе (E_p) к среднему полю $E_a = U(t)/d$, где U(t) — напряжение на промежутке, d — межэлектродное расстояние: $1 - E_c/E_a$, $2 - E_p/E_a$ при $\beta = 1$; $3 - E_c/E_a$, $4 - E_p/E_a$ при $\beta = 5$; $5 - E_c/E_a$ при $\beta = 20$. На вставке — зависимости плотности тока от времени: $1 - \beta = 1$, 2 - 20, 3 - 40.

Рис. 10. Зависимости плотности тока быстрых электронов от времени для случаев однородной (*1*) и неоднородной [2] (*2*) предионизации.

Ранее для вышеописанных условий ($p = 40 \, \text{atm}$) нами были выполнены расчеты с помощью более простой модели [5]. Эта модель была подвергнута критике в работе [6]. Отмеченные в [6] недостатки устранены в расчетной модели, представленной в настоящей работе. Тем не менее качественно результаты не сильно отличаются от полученных нами ранее [5] в основном потому, что прикатодная область обеспечивает нужный ток с помощью автоэмиссии, при этом доля напряжения, приходящаяся на прикатодную область, вследствие малости x_c (см. рис. 9, кривая 5) не очень большая. Поэтому напряженность поля в основном объеме мало отличается от средних величин (U/d). В случае p = 4 atm данное условие не выполняется, и поэтому модель, развитая в [5], применялась нами ранее только лишь для высоких давлений (p = 40 atm).

Известно, что при формировании разряда под действием нано- и субнаносекундных импульсов при значениях давления порядка атмосферного появляются "быстрые" электроны, энергия которых сравнима с ускоряющим напряжением [7–9]. Вопрос об их роли в формировании разряда в настоящий момент является дискуссионным. С использованием метода Монте-Карло нами была проанализирована возможность появления быстрых электронов в указанных условиях. Результаты моделирования показывают, что эффективный переход в режим непрерывного ускорения при p = 4 atm происходит только в тот момент, когда плазменный столб вплотную подходит к катоду и между ними возникает напряженность поля ~ 1 MV/ст и выше.

На рис. 10 показана расчетная зависимость плотности тока "быстрых" электронов, достигнувших анода. Видно, что плотность тока "быстрых" электронов составляет ~ 10^2 A/cm², длительность импульса $\approx 10^{-10}$ s. Оценка ионизационной способности полученного тока "быстрых" электронов показывает, что на динамику формирования пробоя "первого" типа "быстрые" электроны влияния практически не оказывают. При p = 40 atm режим "убегания" электронов не реализовался.

Выводы

Проведенные нами экспериментально-теоретические исследования процессов инициирования и развития пробоя сильно перенапряженных газовых промежутков импульсами напряжения с фронтом 1 ns и короче показали, что ионизационные процессы, приводящие к пробою, начинаются в объеме газа за счет размножения фоновых электронов. Моделирование волновых ионизационных процессов в газовом объеме в предположении однородного распределения начальных электронов показало хорошее согласие с частью наблюдаемых в эксперименте фоторазверток свечения пробоя. Другая часть фоторазверток соответствует неоднородному распределению начальных электронов. Анализу процессов в этих условиях посвящена наша предыдущая работа [2].

При этом трудно однозначно выявить механизм возникновения фоновых электронов. Это могут быть и свободные электроны, всегда присутствующие в газе, и электроны эмитированные с поверхности катода с микровыступов, имеющих достаточно высокий коэффициент усиления поля, а также остаточные электроны от предыдущих пробоев.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 08-02-00982-а, 09-08-00374-а) и президиума УрО РАН (проект фундаментальных исследований, выполняемых в УрО РАН совместно с учеными СО РАН).

Список литературы

- [1] Иванов С.Н. // ДАН. 2004. Т. 399. № 4. С. 472–476.
- [2] Иванов С.Н., Лисенков В.В., Шпак В.Г. // ЖТФ. 2008. Т. 78. Вып. 9. С. 62–68.
- [3] Шпак В.Г., Шунайлов С.А., Яландин М.И. и др. // ПТЭ. 1993. № 1. С. 149–155.
- [4] Иванов С.Н., Шпак В.Г., Шунайлов С.А. и др. // ПТЭ. 2000. № 5. С. 51–55.
- [5] Иванов С.Н., Литвинов Е.А., Шпак В.Г. // Письма в ЖТФ. 2006. Т. 32. Вып. 17. С. 23–32.
- 6] Яковленко С.И. // ЖТФ. 2007. Т. 77. Вып. 6. С. 126–129.
- [7] Babich L.P. // ISTC Science and Technology Series. Vol. 2. Futerpast. Arlington, Virginia, 2003.
- [8] Бабич Л.П., Лойко Т.В., Цукерман В.А. // УФН. 1990. Т. 160. № 7. С. 49.
- [9] Королев Ю.Д., Месяц Г.А. Физика импульсного пробоя газов. М.: Наука, 1991. 223 с.