06;09 Одновременная генерация *TE*₀- и *TE*₁-мод с разными длинами волн в полупроводниковом лазерном диоде

© В.Я. Алешкин,¹ А.А. Бирюков,² А.А. Дубинов,¹ Б.Н. Звонков,² С.М. Некоркин²

 ¹ Институт физики микроструктур РАН,
603950 Нижний Новгород, Россия
² Научно-исследовательский физико-технический институт Нижегородского государственного университета им. Н.И. Лобачевского,
603950 Нижний Новгород, Россия e-mail: sanya@ipm.sci-nnov.ru

(Поступило в Редакцию 3 декабря 2008 г.)

На основе гетероструктуры InGaAs/GaAs/InGaP создан полупроводниковый лазерный диод с оригинальной конструкцией волновода, содержащий две квантовые ямы и генерирующий при температуре жидкого азота одновременно TE_0 - и TE_1 -моды с длинами волн 1.05 и 0.9 μ m соответственно.

PACS: 42.55.Px, 42.65.An, 42.70.Nq, 61.82.Fk, 78.67.De

Введение

На основе генерации разностной частоты в полупроводниковых лазерных диодах можно создать компактные маломощные источники излучения среднего и дальнего ИК-диапазонов. Недавно были получены первые экспериментальные результаты [1], которые показали техническую осуществимость этого подхода. Однако для соблюдения условия фазового синхронизма необходимо, чтобы мода с большей частотой имела более высокий порядок. Для выполнения этого условия в работе [1] была использована двухчиповая конструкция лазера, в которой мода ТЕ₀- генерировалась в одном чипе и вводилась в чип, генерирующий ТЕ₁-моду. Такой подход требует очень точного совмещения волноводов двух чипов, что является непростой задачей. Отметим, что ранее в нашей группе были созданы каскадные межзонные лазеры с туннельным p-n-переходом [2], которые генерировали одновременно две различные моды. Однако в таких лазерах из-за неустойчивости тиристорного типа удалось добиться лазерной генерации только в импульсном режиме.

В настоящей работе создан одночиповый лазер с одним p-n-переходом для одновременной генерации TE_0 и TE_1 -мод на основе гетероструктуры GaAs (волноведущий слой и контакты)/InGaAs (квантовые ямы)/InGaP (ограничивающие слои). Удалось получить генерацию TE_0 - и TE_1 -мод в непрерывном режиме при температуре 77 К.

Конструкция волновода лазера

Казалось бы, для одновременной генерации двух мод TE_0 и TE_1 в полупроводниковом лазерном диоде можно использовать волновод традиционной конструкции. Для этого следовало бы разместить квантовую яму, генерирующую TE_0 -моду (частота которой меньше), в

центре волноводного слоя, где находится узел TE_1 моды (чтобы избежать сильного поглощения этой моды в квантовой яме, генерирующей TE_0 -моду). Квантовую яму для генерации TE_1 -моды следовало бы расположить в пучности этой моды.

Однако, как показывают расчеты [3], такая конструкция оказывается неэффективной, поскольку из-за малой дискриминации мод вторая квантовая яма, предназначенная для генерации TE_1 -моды, будет генерировать как TE_1 -, так и TE_0 -моды. Для этого чтобы избавиться от этой трудности, нами был введен дополнительный тонкий ограничительный слой InGaP в волноведущий слой GaAs, аналогично тому, как это было сделано в лазере, генерирующем TE_1 -моду [3]. Этот слой значительно

Рис. 1. Зависимости от координаты (в направлении поперек p-n-перехода лазера) действительной части коэффициента преломления (верхняя линия) и квадратов электрических полей в модах TE_0 (сплошная кривая) и TE_1 (штриховая кривая). Стрелками показано положение коротковолновой (QW1) и длинноволновой (QW2) квантовых ям в структуре. Слои структуры: 1, 3, 5, 7 — GaAs, 2, 4, 6 — InGaP, 8 — Au.

изменяет структуру обеих мод и позволяет добиться устойчивой генерации TE_1 -моды (рис. 1). Из рис. 1 очевидно, что квантовые ямы для генерации TE_1 - и TE_0 -мод следует располагать в соответствующих пучностях электрического поля этих мод.

Следует отметить, что предложенная конструкция очень требовательна к точности расположения квантовой ямы, генерирующий TE_0 -моду. Дело в том, что эта квантовая яма эффективно поглощает более коротковолновую TE_1 -моду. И поэтому технологическая ошибка в ее расположении от узла TE_1 -моды даже в десять нанометров приводит к росту поглощения TE_1 -моды на десятки обратных сантиметров.

Характеристики лазеров и обсуждение

Лазерная структура была выращена методом МОСгидридной эпитаксии при атмосферном давлении. Параметры слоев приведены в таблице. Лазерные диоды с шириной активной области 10 µm были изготовлены путем химического травления контактного слоя вне активной полоски с последующей протонной имплантацией вскрытой поверхности InGaP. После нанесения контактов и раскалывания чипы напаивались на медные теплоотводы структурой вниз для работы лазеров в непрерывном режиме генерации.

Параметры слоев гетеролазера с квантовыми ямами в волноводе

Номер слоя	Состав слоя	Тип прово- димости	Концентрация носителей, m ⁻³	Толщина слоя, nm
1	GaAs (подложка)	п	$5 \cdot 10^{20}$	_
2	InGaP	п	10 ²¹	700
3	GaAs	Нелеги- рованный	_	80
4	$\begin{array}{c} In_{0.16} \mathrm{Ga}_{0.84} \mathrm{As} \\ (QW1) \end{array}$	То же	_	9
5	GaAs	» »	_	95
6	InGaP	р	10 ²¹	90
7	GaAs	р	10 ²¹	60
8	GaAs	Нелеги- рованный	_	20
9	$In_{0.36}Ga_{0.64}As \\ (QW2)$	То же	10 ²¹	9
10	GaAs	р	10 ²¹	54
11	GaAs	р	10 ²¹	180
12	InGaP	р	$2\cdot 10^{21}$	700
13	Контакт- ный слой	р	10^{21}	0.35

Рис. 2. Спектральные характеристики лазера, измеренные при непрерывном возбуждении и комнатной температуре для силы тока: *1* — 0.5, *2* — 0.9, *3* — 1.6, *4* — 2 A.

Рис. 3. Спектральная характеристика лазера, измеренная при непрерывном возбуждении и температуре жидкого азота.

На рис. 2 приведены спектральные характеристики, измеренные при непрерывном возбуждении при комнатной температуры. Из рисунка видно, что при комнатной температуре вплоть до токов, меньших 2 A, имеется электролюминесценция в двух областях с длиной волны околов 0.95 и $1.125 \,\mu$ m. При токе 2 A наблюдаются резкий рост интенсивности и обужение коротковолновой линии, что свидетельствует о возникновении стимулированного излучения на длине волны $0.95 \,\mu$ m. Стимулированного излучения на длине волны $1.25 \,\mu$ m при комнатной температуре не наблюдалось.

При 77 К наблюдалась одновременная генерация в непрерывном режиме стимулированного излучения на двух данных волн $\lambda = 0.9$ и $1.05 \,\mu$ m. Измеренный спектр при 77 К приведен на рис. 3.

Рис. 4. Рассчитанные (сплошная кривая для TE_0 -моды, штриховая кривая для TE_1 -моды) и измеренные (квадраты для $\lambda = 1.05 \,\mu$ m, треугольники для $\lambda = 0.9 \,\mu$ m) диаграммы направленности интенсивности излучения в плоскости, перпендикулярной p-n-переходу лазера.

Для того чтобы установить модовый состав излучения, были измерены диаграммы направленности излучения в плоскости, перпендикулярной *p*-*n*-переходу. Диаграмма направленности излучения с длиной волны $\lambda = 1.05\,\mu m$ имеет один максимум, что характерно для TE_0 -моды. Это хорошо видно из рис. 4, на котором представлены измеренная при $T = 77 \, \text{K}$ (квадраты) и рассчитанная (сплошная линия) диаграммы направленности ТЕ₀-моды. Из рисунка видно, что рассчитанная диаграмма несколько уже наблюдаемой. На этом же рисунке приведены рассчитанная и измеренная диаграммы излучения на длине волны 0.9 µm. Видно, что измеренная диаграмма направленности имеет характерный для *TE*₁-моды двугорбый пик. Отметим, что различия рассчитанных и измеренных диаграмм направленности могут быть обусловлены несовершенством сколов граней чипа, которые играют роль зеркал.

Таким образом, из приведенных экспериментальных результатов ясно, что исследуемый лазер одновременно в непрерывном режиме генерирует две моды: TE_0 -моду с длиной волны $1.05 \,\mu$ m и TE_1 -моду с длиной волны $0.9 \,\mu$ m при температуре 77 К. При комнатной температуре наблюдалась генерация только TE_1 -моды с длиной волны $0.95 \,\mu$ m.

Работа выполнена при финансовой поддержке РФФИ (гранты 07-02-12177-офи, 08-02-97034-р_поволжье_а, 07-02-00486), программы президиума РАН "Электромагнитные волны терагерцового диапазона", Программы РАН "Когерентное оптическое излучение полупроводниковых соединений и структур", президента РФ (МК-3344.2007.2), госконтракта Минобрнауки № 02.518.11.7031.

Список литературы

- [1] Zvonkov B.N., Biryukov A.A., Ershov A.V., Nekorkin S.M., Aleshkin V.Ya., Gavrilenko V.I., Dubinov A.A., Maremyanin K.V., Morozov S.V., Belyanin A.A., Kocharovsky V.V., Kocharovsky VI.V. // Appl. Phys. Lett. 2008. Vol. 92. P. 021 122.
- [2] Nekorkin S.M., Biryukov A.A., Demina P.B., Semenov N.N., Zvonkov B.N., Aleshkin V.Ya., Dubinov A.A., Gavrilenko V.I., Marenyanin K.V., Morozov S.V., Belyanin A.A., Kocharovsky V.V., Kocharovsky Vl.V. // Appl. Phys. Lett. 2007. Vol. 90. P. 171 106.
- [3] Бирюков А.А., Звонков Б.Н., Некоркин С.М., Алёшкин В.Я., Дубинов А.А., Кочаровский В.В., Кочаровский Вл.В. // ФТП. 2008. Т. 42. С. 361.