05;08;12 Пьезоэлектрические свойства композитов полимер–пьезоэлектрическая керамика, кристаллизованных в условиях действия плазмы электрического разряда

© М.А. Курбанов, И.С. Султанахмедова, Г.М. Гейдаров, Г.Г. Алиев

Институт физики Национальной академии наук Азербайджана, Az-1143 Баку, Азербайджан e-mail: mKurbanov@physics.ab.az

(Поступило в Редакцию 23 апреля 2008 г. В окончательной редакции 3 октября 2008 г.)

Показано, что при кристаллизации композита полимер-пьезоэлектрическая керамика в условиях действия плазмы электрического разряда и температуры происходит сильное окисление полимерных цепей, приводящее к увеличению концентрации центров локализации зарядов или числа локальных уровней в квазизапрещенной зоне полимерной фазы композита. Это, в свою очередь, сопровождается увеличением при электротермополяризации величины межфазных зарядов, способствующих эффективной поляризации доменов пьезофазы и, следовательно, к повышению качества пьезоэлектрических свойств. Показано, что степень окисления полимерной фазы определяется природой электрических разрядов, в условиях которых осуществляется кристаллизация композитов. Экспериментально установлено, что кристаллизацию пьезоэлектрических композитов необходимо осуществить в условиях действия микроразряда, не перешедшего на стримерную фазу своего развития. Определены оптимальные режимы кристаллизации.

PACS: 77.84.Lf

Введение

Исследования в области физики твердого тела показывают, что в последние десятилетия заметно возрос интерес к электретным, пьезо- и пироактивным, варисторным, позисторным и фотоэлектрическим гетерогенным материалам на основе полимер-сегнетопьезокерамики и полимер-полупроводника [1–10], обладающих уникальными электрофизическими, химическими и механическими свойствами. Так, например, интерес к пиро- и пьезоактивным материалам связан с их структурноморфологическим многообразием фаз [6–14], разнообразными зависимостями физических свойств от состава, структуры микрогеометрии, зарядового состояния, а также обусловлен возможностью получения гетерогенных материалов с различными физическими свойствами [2,6,11,12].

Отличительной чертой пьезо- и пироэлектрических композитов являются высокие электромеханические показатели, которыми не обладают традиционные пьезокерамики и полимеры в отдельности. Полученные научные результаты имеют непосредственное значение и для разработки полимерных нанокомпозитов [3–5]. Если исходить из того, что всякие изменения физической и химической структур полимерной фазы будут сопровождаться возникновением в ее квазизапрещенной зоне локальных уровней, то вариацией концентрации и энергии активации этих уровней можно целенаправленно регулировать электронное состояние границы раздела фаз композитов [7–10,15].

Нами впервые была предложена плазменная технология кристаллизации композитов полимер-пьезокерамика, способная изменить электронное состояние границы раздела фаз [7]. Для этой цели использован электрический разряд, возникающий в диэлектрической структуре металл-диэлектрик-воздушная средакомпозит-металл, который позволяет равномерно модифицировать композит по объему при его кристаллизации. Учитывая, что развитие этого типа разряда в указанной диэлектрической структуре сопровождается образованием ускоренных электронов и ионов, рекомбинационных излучений, синтезом активных газовых продуктов и возникновением поверхностных электронноионных эффектов, то необходимо оптимизировать условия кристаллизации композитов при одновременном воздействии плазмы разряда.

Цель настоящей работы — оптимизация режимов кристаллизации пьезоэлектрических композитов полимерпьезокерамика в условиях одновременного воздействия температуры и плазмы электрического разряда в газе путем определения взаимосвязи между параметрами разряда, окислением полимерной фазы и пьезоэлектрическими свойствами композитов.

Методика эксперимента

Рассмотрены матричные композиты (тип 0–3) на основе пьезокерамики семейства цирконата-титаната свинца (ЦТС) типа ПКР-3М (Pb(ZrTi)O₃-PbNb_{2/3}Zn_{1/3}O₃-PbNb_{2/3}Mg_{1/3}O₃-MnO₂) (ромбоэдрическая) и термопластичного полимера полиэтилена высокой плотности — ПЭВП. Температура прессования полиолефинного композита выбрана в пределах 413–437 К. Толщина пьезокомпозита выбрана 200 · 10⁻⁶ m, а диаметр пьезочастиц — (100–160) · 10⁻⁶ m. Пьезоэлектрический

Рис. 1. Температурные зависимости тока термостимулированной деполяризации (1, 2, 5), деформации (4) и плотности (3) композита ПЭВП + 50 vol.% ПКР-ЗМ. 1 — ТСД ПЭВП; 2 — ТСД термокристаллизованного композита; 4 — термомеханическая кривая; 5 — ТСД композита, термокристаллизованного в условиях действия плазмы электрического разряда.

модуль композитов определен в квазистатическом режиме методом резонанса-антирезонанса [16-18] с точностью 10%. Метод кристаллизации при одновременном воздействии плазмы электрического разряда, возникающего под действием высокого синусоидального напряжения, заключается в нагревании изделия до температуры плавления, выдержке его при этой температуре в течение 5-10 min с последующим охлаждением под действием разряда до температуры кристаллизации полимерной фазы со скоростью 0.5-4 K/min с целью направленного изменения химической (окисление) и физической (надмолекулярная) структур полимерной матрицы гетерогенной системы полимер-пьезокерамика.

Температура плавления композита определялась по температуре второго пика спектра тока термодеполяризации и температуре заметного уменьшения плотности (ρ) (рис. 1, кривые 4 и 3 соответственно), так как формирование второго пика ТСД и уменьшение ρ связаны с ростом интенсивности тепловых колебаний макромолекул полимерной фазы композита. Температура плавления является верхним пределом температурного интервала кристаллизации. Нижний предел температурного интервала кристаллизации определяется по началу заметного роста деформации и объема (рис. 1, термомеханическая кривая 5 и кривая 3 соответственно) композитов.

На практике за нижнюю границу температурного интервала кристаллизации принимали температуру на 10-20 К больше, чем температура, найденная по кривым 3 и 5 (см. рис. 1), что соответствует температуре кристаллизации полимерной фазы. Продолжительность кристаллизации $t_{\rm kr}$ ограничивается насыщением оптической плотности кислородосодержащих групп, появившихся в ИК-спектре полимерной фазы композита полимер-пьезокерамика в результате действия электрического разряда.

В условиях наших экспериментов tkr или длительность воздействия разряда изменялась в пределе от 15 до 30 минут в зависимости от свойств и объемного содержания фаз полимера и пьезокерамики в композите, толщины газового зазора, где инициированы микроразряды и амплитуды приложенного к системе диэлектрикгаз-композит напряжения. Параметры разряда в системе металл-диэлектрик-воздушная среда-композит-металл определялись методом синхронной регистрации вольткулоновской характеристики, пространственной картины развития плазменных каналов электронно-оптическим преобразователем (ЭОП-грамма) и осциллограммы импульса напряжения (тока) разряда. Исходя из поставленной цели необходимо прежде всего определить, между какими параметрами электрического разряда следует найти взаимосвязь с пьезоэлектрическими свойствами композитов и каким образом варьировать эти параметры. Известно, что параметры электрического разряда в диэлектрической структуре можно варьировать путем изменения давления (P) и толщины (d) газовой среды и электрофизических параметров диэлектрических барьеров (ε , ρ_v , tg δ), ограничивающих газовую среду [19–23].

В качестве основных параметров разряда выбраны энергия ΔW и переносимый заряд Δq отдельных микроразрядов. Под энергией отдельных микроразрядов ΔW понимается энергия, необходимая для формирования их в газовой фазе системы металл–диэлектрик–воздушная среда–композит–металл при ее электрическом нагружении. Под зарядом отдельных микроразрядов Δq понимается заряд, переносимый по каналу микроразряда в процессе его формирования. Такой выбор параметров и методов их вариации позволяет нам выявить роль основных факторов разряда, определяющих изменение свойств пьезокомпозитов.

Экспериментальные результаты и их обсуждение

Энергию (ΔW) и перенесенный заряд (Δq) микроразряда в газовой среде системы металл–диэлектрик–газ– композит–металл можно рассчитать как

$$\Delta W = \frac{1}{2} \frac{\Delta S}{S} (C_d + C_g) (U_1^2 - U_2^2), \qquad (1)$$

$$\Delta q = \frac{\Delta S}{S} (C_d + C_g) (U_1 - U_2), \qquad (2)$$

если экспериментально определить следующие параметры, входящие в указанные выражения: U_1 , U_2 , ΔS [19–23]. Здесь U_1 , U_2 — напряжения начала развития и погасания микроразряда соответственно; ΔS — площадь поверхности композита (диэлектрика), разряжаемой микроразрядом; S — площадь металлического электрода, нанесенного на поверхность диэлектрических барьеров; C_d , C_g — емкость диэлектрического барьера и газовой среды соответственно.

Впервые нами было показано, что энергию и заряд микроразрядов можно определить путем синхронной регистрации их оптической картины развития, импульса напряжения или тока (рис. 3) [19,20]. Оптическая картина микроразрядов, на основе которой определилась площадь диэлектрического анода (положительный электрод, покрытый диэлектриком) ΔS , разряжаемая отдельными микроразрядами, регистрировалась лупой времени ЛВ-04 на базе электронно-оптического преобразователя типа УМИ-92. Лупа времени обеспечивала 16-кадровую развертку изображений в режиме кадровой съемки с максимальным разрешением не менее 20 pairs str/mm в каждом кадре по всему полю экрана электронно-оптического преобразователя (ЭОП) [24].

Разрешающая способность ЭОП при каждом эксперименте определялась с помощью контрольного снимка оптической "Миры". Точность оценки площади поверхности диэлектрического анода ΔS , разряжаемая отдельными микроразрядами, зависит от точности определения диаметра микроразрядов у диэлектрического анода.

При оценке величины диаметра микроразрядов приведена статистическая обработка полученных ЭОП-грамм. Были вычислены среднее значение диаметра микроразрядов, среднеквадратичные отклонения их диаметра и дисперсии значений диаметра микроразрядов. Каждое значение измеренных величин является средним из 100–150 измерений по ЭОП-грамме. Диаметр канала микроразряда измерялся у диэлектрического анода с точностью до 5 μ m. Точность определения ΔW и Δq зависит от точности регистрации электрических параметров, входящих в выражения (1) и (2).

После определения U_1 и U_2 (по осциллограмме) (рис. 2), а также значения ΔS (по ЭОП-грамме) нами были рассчитаны значения энергии (ΔW) и заряда (Δq) для различных давлений (P) и толщин (d) газовой фазы разрядной ячейки при постоянстве величины приложенного к системе диэлектрик-газ-композит высокого синусоидального напряжения (рис. 3 и 4). Погрешность определения ΔW и Δq изменялась в пределе от 7 до 10%.

Из рис. 3 и 4 видно, что с изменением величины давления (при d = const) и толщины (при P = const) газовой среды энергия ΔW и заряд Δq микроразрядов сначала растут медленно, а затем с ростом давления или толщины воздушной фазы увеличиваются быстрее, чем по линейному закону. Экспериментальные результаты показывают, что в ИК-спектре полимерной матрицы (ПЭВП) композита после его кристаллизации в условиях действия плазмы электрического разряда появляются новые кислородосодержащие группы: C=O, C-O-C, OH [7].

На рис. 5, а приведено изменение оптической плотности ΔD ИК-спектра вышеуказанных групп в полимерной матрице, кристаллизованной в условиях действия плазмы электрических разрядов, возникающих при различных давлениях газовой фазы системы диэлектрикгаз-композит. Видно, что изменение оптической плотности ΔD указанных групп в зависимости от давления га-

Рис. 2. Оптическая (ЭОП-грамма) и электрическая (осциллограмма) картины микроразрядов в системе металлдиэлектрик-газ-композит-металл при различных значениях давления в газовой фазе. a - P = 0.015; b - 0.102 MPa. Толщина газовой среды $4 \cdot 10^{-3}$ m, $U = 11 \cdot 10^{3}$ V, композит-ПЭВП + 50 vol.%. ПКР-3М, диэлектрик — пленка ПЭВП толщиной $5 \cdot 10^{-2}$ m; c - импульсы напряжения микроразрядов в газовой фазе системы диэлектрик-газ-композит. $U = 17 \cdot 10^{3}$ V, P = 0.1 MPa, $d = 3 \cdot 10^{-3}$ m. I — приложенное напряжение, 2 — импульсы напряжения микроразрядов, 3 калибрующее напряжение ($t = 200 \,\mu$ s), t_1 — время, соответствующее первому пробоя (U_1) газовой среды, t_2 — время, соответствующее второму пробою газовой среды.

зовой среды имеет экстремальный характер: значение D сначала растет, а затем заметно уменьшается.

Анализ рис. 2, 3, 5, *а* и их сопоставление позволяют сделать следующие выводы:

— зависимости $\Delta D = f(P)$, $\Delta W = f(P)$ и $\Delta q = f(P)$ заметно отличаются;

— заметный рост энергии и заряда микроразряда в зависимостях $\Delta W = f(P)$ и $\Delta q = f(P)$ после значения P = 0.102 МРа свидетельствует об изменении механизма разряда с увеличением давления;

 совпадение давления, при котором получены максимумы оптической плотности кислородосодержащих групп с давлением, при котором наблюдается заметный рост энергии и заряда микроразряда, показывает взаимосвязь между физико-химическими процессами, происходящими в канале разряда и в объеме полимерной матрицы;

— не наблюдается корреляции между окислением полимерной фазы композита и энергией заряженных частиц микроразряда, определяемой как $\frac{\Delta W}{\Delta q}$ (рис. 3, *a*, кривая 3);

— резкое уменьшение концентрации кислородосодержащих групп в композитах при давлении газовой среды выше 0.1 МРа не связано только с потерей массы полимерной фазы, так как степень потери групп CH_2 (показатель эрозии полимера) меньше степеней уменьшения оптической плотности кислородосодержащих групп с давлением, после экстремальной области (рис. 5, *a*);

— концентрация кислородосодержащих групп определяет интенсивность окисления полимерной фазы композита [7,9,10].

Рис. 3. Зависимость энергии ΔW , заряда Δq и отношения $\frac{\Delta W}{\Delta q}$ микроразрядов в системе металл–диэлектрик–газ–композит– металл от давления газовой среды, $a - \Delta W = f(P)$ для толщины зазора: $d = 3 \cdot 10^{-3}$ m (кривая 1), $d = 4 \cdot 10^{-3}$ m (2); $\frac{\Delta W}{\Delta q} = f(P)$ для $d = 4 \cdot 10^{-3}$ m (3); $b - \Delta q = f(P)$ для $d = 3 \cdot 10^{-3}$ m (кривая 1) и $d = 4 \cdot 10^{-3}$ m (кривая 2). $U = 11 \cdot 10^3$ V, композит–ПЭВП + 50 vol.% ПКР-3М, толщина диэлектрика (ПЭВП) — 200 $\cdot 10^{-6}$ m.

Рис. 4. Зависимость ΔW и Δq микроразрядов от толщины газовой среды системы металл-диэлектрик (ПЭВП)-газкомпозит (ПЭВП + 30 vol.% ПКР-3М)-металл. P = 0.1 МРа; $U = 19.4 \cdot 10^3$ V, $I - \Delta q = f(d)$; $2 - \Delta W = f(d)$. Толщина диэлектрика (ПЭВП) $- 6 \cdot 10^{-4}$ m.

Далее исходя из поставленной цели необходимо решить следующие задачи:

 определить взаимосвязь между пьезоэлектрическими свойствами композита полимер-пьезокерамика и энергетическими параметрами микроразрядов, в условиях которых осуществлена кристаллизация;

 определить вероятность изменения механизма развития разряда в выбранных условиях кристаллизации;

— определить взаимосвязь между физико-химическими процессами, инициированными действием микроразрядов различных энергий (ΔW) и механизмов развития в газовой среде и полимерной фазе композита при кристаллизации.

На рис. 5, *b* представлено изменение пьезоэлектрического модуля d_{33} и величины заряда *Q*, стабилизированного на границе полимер-пьезокерамика при электротермополяризации композитов, кристаллизованных в условиях действия плазмы электрического разряда при различных давлениях (*P*).

Многочисленные экспериментальные результаты показывают, что значения максимумов зависимостей $d_{33} = f(P), Q = f(P)$ и $D_v^{C=O} = f(P)$ совпадают, что свидетельствует о тесной взаимосвязи между указанными параметрами. Уменьшение значения d_{33}, Q группы C=O после P = 0.1 МРа можно связать с изменением механизма развития микроразрядов и условий протекания вторичных процессов в их плазменных каналах.

Под вторичными процессами понимается синтез активных газообразных продуктов в каналах микроразрядов, возникновение фотонов за счет рекомбинации носителей заряда и их поглощение, поверхностные рекомбинационные и химические эффекты. Подтверждением этого является измерение энергетических параметров и ЭОП-грамм разряда в зависимости от давления газовой среды. Из приведенных ЭОП-грамм видно, что

Рис. 5. Зависимость оптической плотности D_v кислородосодержащших и СН-групп (показатель эрозии) от давления газовой среды: 1 — группа ОН, 2 — CH₂, 3 — C–O–C, 4 — C=O (a). Зависимости пьезомодуля d_{33} (1), D_v (C=O) (2) и заряда Q (3) от давления газовой среды, где инициирован электрический разряд (b). Композит ПЭВП + 50 vol.% ПКР-ЗМ, напряженность электрического поля $E_p = 3$ MV/m, температура $T_p = 373$ К и время $t_p = 0.5$ h поляризации. Образцы композита кристаллизованы в условиях действия плазмы электрического разряда в газовой среде толщиной $4 \cdot 10^{-3}$ m.

при высоких давлениях (P > 0.1 MPa) пространственная картина разряда в газовой среде между композитом и диэлектрическим барьером состоит из отдельных четко выраженных дискретных каналов (рис. 2, *b*). А при P < 0.1 MPa, в частности P = 0.015 MPa, каналы микроразрядов пространственно с трудом разрешаются электронно-оптическим преобразователем и воздушный зазор практически равномерно пронизан плотно расположенными микроразрядами (рис. 2, *a*).

Изменение ΔW , Δq и механизма развития микроразрядов имеет место и при вариации толщины фазы, ограниченной диэлектрическими анодом и катодом (отрицательный электрод, покрытый диэлектриком). Конечно, такое изменение природы разряда ΔW и Δq , процесс синтеза активных газообразных продуктов (O₃, O, OH, NO) в плазменных каналах микроразрядов, окисление полимерной фазы, и следовательно, концентрацию центров локализации зарядов в композите.

Изменение концентрации и энергии активации центров локализации зарядов в результате кристаллизации композита ПЭВП + 50 vol.% ПКР-3М при одновременном воздействии плазмы электрического разряда видно из полученных спектров тока термостимулированной деполяризации (ТДС) (рис. 1, кривые 1, 2 и 4). Кривая 1 соответствует ТСД поляризованного ПЭВП, кривые 2 и 4 — термокристаллизованному и термокристаллизованному в условиях действия плазмы электрического разряда композита ПЭВП + 50 vol.% ПКР-3М соответственно.

Все образцы поляризовались при одних условиях: температура, электрическое поле и время поляризации соответственно равны: 393 К, 4 МV/т и 0.5 h. Спектр ТСД чистого ПЭВП имеет один максимум при температуре ~ 393 К, а спектры ТДС композитов имеют два минимума, положение одного из которых практически совпадает с положением максимума ТСД ПЭВП, второй максимум — наблюдается при 440 К для (термокристаллизованного) и 473 К для (термокристаллизованного) в условиях действия плазмы электрического разряда) композитов.

Сравнение спектров ТСД композитов, кристаллизованных в различных условиях, показывает, что они отличаются не только расположением максимумов, но и величиной тока в максимумах и, следовательно, величиной высвободившегося заряда, непосредственно зависящей от концентрации центров локализации (кислородных центров) носителей электрического заряда. Сдвиг второго максимума ТСД плазмотермокристаллизованных композитов в сторону высоких температур и увеличение его амплитуды свидетельствуют о повышении энергии активации и концентрации центров локализации носителей заряда, ответственных за формирование этого максимума. Подтверждением сделанного вывода являются экспериментальные результаты, приведенные в таблице и на рис. 1, 3–6.

Из теории электрического разряда, предложенной Ретером и Миком, известно, что критерием перехода лавины в стример является соизмеримость напряженности электрического поля на газовом зазоре E_1 , создаваемого приложенным между электродами напряжением (E_0), и напряженности электрического поля, создаваемого лавиной электронов E_2 или положительными ионами в ее следе [25].

С развитием лавины или микроразряда непрерывно увеличивается число (n) электронов и положительных ионов по закону Таундсенда $(n = n_0 e^{\alpha d})$, и при этом напряженность электрического поля на фронте микроразряда (лавины) возрастает: n_0 — число начальных электронов, инициирующих развитие микроразряда, α — коэффициент ударной ионизации, d — расстояние между

Определенные условия перехода лавины в стример в зависимости от толщины газовой фазы

Параметры	Толщина газовой фазы, $d \cdot 10^{-3} \mathrm{m}$					
	1	2	3	4	5	6
$E_1 \cdot 10^{-6}$, V/m	3.6	3.25	3.14	2.95	2.85	2.78
$E_2 \cdot 10^{-6}$, V/m	0.0054	0.0098	0.19	0.41	0.7	0.72
Κ	0.0015	0.003	0.06	0.14	0.24	0.26

диэлектрическими анодом и катодом (толщина газовой фазы). В какой-то момент или на каком-то расстоянии от диэлектрического катода E_2 становится соизмеримой с E_1 , и происходит переход лавины в стример. Условие перехода лавины в стример выражается как $E_2 = KE_1$ [25], где K = 0.1-1 (см. таблицу).

Для расчета коэффициента *К* экспериментально были определены следующие параметры:

— величина заряда, перенесенного микроразрядами, в зависимости от толщины газовой фазы системы диэлектрик-газ-композит;

— время формирования микроразрядов;

диаметр микроразрядов, найденный из полученных
 ЭОП-грамм, в зависимости от толщины газовой фазы;

— значение напряжения пробоя (U_1) , найденное по осциллограмме импульса напряжения, в зависимости от толщины газовой фазы и, следовательно, напряженности электрического поля пробоя $(R_1 = U_1/d)$.

Видно: что переход лавины в стример имеет место при $d \ge 3 \cdot 10^{-3}$ m. При этом усиливаются ионизационные процессы и заметно растут значения ΔW и Δq микроразрядов с увеличением толщины газовой фазы (рис. 4). Сопоставление рис. 4 и 6 показывает, что при значениях толщины газовой фазы, при которых происходит переход лавины в стример, наблюдается заметный спад оптической плотности кислородосодержащих групп, образовавшихся в полимерной матрице в процессе кристал-

Рис. 6. Зависимость оптической плотности крислородосодержащих групп, образовавшихся в полимерной фазе композита ПЭВП + 30vol.% ПКР-3М при кристаллизации в условиях действия плазмы электрического разряда от толщины газовой среды (воздух). $1 - D_{CH_2} = f(d); 2 - D_{C-O-C} = f(d); 3 - D_{OH} = f(d); 4 - D_{C=O} = f(d)$. Время кристаллизации — $5 \cdot 10^2$ s; перенесенный заряд — $201 \cdot 10^{-9}$ C.

лизации композитов действием плазмы электрического разряда. Причинами уменьшения оптической плотности кислородосодержащих групп при переходе лавины в стример, как нам представляется, могут быть следующие эффекты: эрозия (рис. 5, кривая 2), инициированная электронно-ионной бомбардировкой и атомарным кислородом, уменьшение концентрации озона (O₃) в плазменных каналах микроразрядов из-за роста интенсивности ионизационных и рекомбинационных процессов, энергии электронов и ионов с увеличением толщины (P = const) (рис. 4) и давления (d = const) (рис. 3) газовой среды.

Известно, что в зоне развития электрического разряда в воздушной среде образуются атомарный кислород и озон, являющиеся активными травящим и окисляющим реагентами соответственно [21–23,26]. Образование в каналах микроразрядов атомарного кислорода относительно высокой концентрации по сравнению с другими активными продуктами (OH, O₃, NO) приводит, совместно с температурой и плазмой электрического разряда, к эрозии и окислению, но с превалирующим разрушением полимерной фазы композита. А в случае синтеза в каналах микроразрядов озона более высокой концентрации по сравнению с активными группами (OH, O, NO), их совместное с температурой и плазмой действие способствует окислению и эрозии, но с превалирующим окислением.

Учитывая, что озон обладает наиболее окисляющим действием, а атомарный кислород — эрозирующим [21–23,27], можно полагать следующее:

а) при относительно малой энергии (ΔW) микроразрядов, возникающих в кислородосодержащей газовой среде (воздух) в условиях $P \leq 0.1$ MPa, $d < 3 \cdot 10^{-3}$ m (рис. 3 и 4), выход синтезированного в их плазменных каналах озона больше по сравнению с аналогичным показателем атомарного кислорода;

б) при относительно большой энергии микроразрядов, возникающих в воздушной среде в условиях P > 0.1 MPa, $d \ge 3 \cdot 10^{-3}$ m (рис. 3 и 4), выход атомарного кислорода больше по сравнению с выходом озона.

Заключение

Таким образм, сказанное подтверждает вывод о том, что термокристаллизация композитов полимер– пьезокерамика при одновременном воздействии плазмы электрического разряда в электроотрицательном газе (в воздухе) приводит к существенному изменению химической структуры полимерной фазы, образованию центров локализации в ней и совершенствованию пьезоэлектрических свойств композитов в целом. Заметное увеличение зарядового состояния (способность стабилизировать носители электрического заряда при электротермополязирации) и пьезоэлектрического модуля композитов, кристаллизованных при одновременном воздействии температуры и плазмы электрического разряда, указывает на необходимость оптимизации тепловых, электрических и физических режимов (параметров) этой технологии.

Показано, что увеличение пьезоэлектрического модуля и концентрации кислородосодержащих групп композитов ПЭВП + 50 vol.% ПКР-3М, кристаллизованных в условиях действия плазмы более существенно при большом выходе озона в каналах микроразрядов. Установлено, что эффекты, обусловленные совместным действием активных кислородосодержащих продуктов и плазмы, приводят к более существенному окислению полимерной фазы, образованию в ней центров захвата носителей заряда большой концентрации, а также формированию более высокого пьезоэлектрического эффекта, чем действие каждого фактора (плазма и температура) в отдельности.

Экспериментально определены оптимальные значения давления ($P \leq 0.1 \,\mathrm{MPa}$) и толщины газового зазора ($d \leq 3 \cdot 10^{-3} \,\mathrm{m}$) системы диэлектрик-газ-композит, существенно влияющих на энергетические параметры микроразрядов ($\Delta W, \Delta q$) и оптическую плотность кислородосодержащих групп в полимерной фазе.

Список литературы

- Глушанин С.В., Тополов В.Б. // Письма в ЖТФ. 2001. Т. 27. Вып. 15. С. 15.
- [2] Тополов В.Ю., Панич А.Е., Курбанов М.А. // Наномикросистемная техника. 2006. № 1. С. 34–38.
- [3] Григорьев Е.И., Завьялов С.А., Чвалун С.Н. // Письма в ЖТФ. 2004. Т. 30. Вып. 8. С. 40.
- [4] Еремкин В.В., Панич А.Е., Смотраков В.Г. // Письма в ЖТФ. 2005. Т. 31. Вып. 15. С. 80.
- [5] Алешин В.И., Цихоцкий Е.С., Яценко В.К. // Письма в ЖТФ. 2004. Т. 74. Вып. 1. С. 62.
- [6] Лушейкин Г.А. Полимерные электреты. М.: Химия, 1990. 184 с.
- [7] Керимов М.К., Курбанов М.А., Агаев Ф.Г., Мусаева С.Н., Керимов Э.А. // ФТТ. 2005. Т. 47. Вып. 4. С. 686–690.
- [8] Керимов М.К., Керимов Э.А., Мусаева С.Н., Панич А.Е., Курбанов М.А. // ФТТ. 2007. Т. 49. Вып. 5. С. 877–880.
- [9] Курбанов М.А., Керимов М.К., Мусаева С.Н., Керимов Э.А. // ВМС. Сер. Б. 2006. Т. 48. № 10. С. 1892–1897.
- [10] *Курбанов М.А., Мусаева С.Н., Керимов Э.А. //* ВМС. Сер. Б. 2004. Т. 46. № 12. С. 2100–2103.
- [11] Smay J.E., Cesarano J.I., Tuttle A.B., Levis J.A. // J. Appl. Phys. 2002. Vol. 92. N 10. P. 6119.
- [12] Zhang Q.M., Geng X. // J. Appl. Phys. 1994. Vol. 76. N 10. P.6014.
- [13] Шахмахтинский М.Г., Мамедов А.И., Курбанов М.А., Гарагашов А.А. // Изв. АН Азерб.ССР. Сер. физ.-мат. и технич. наук. 1987. № 4. С. 69.
- [14] Kurbanov M.A., Shakhtakhtinsky M.G., Seidov F.I., Musaeva S.N., Faradzhzade A. // Fizika. 1998. Vol. 4. N 2. P. 61.
- [15] Электреты / Под ред. Г. Сесслера. М.: Мир, 1983. 488 с.
- [16] Ананьева А.А. Керамические приемники звука. М.: АН СССР. 1963. 178 с.
- [17] Барфут Дж., Тейлор Дж. Полярные диэлектрики и их применение. М.: Мир, 1981. 278 с.

- [18] Лайнс М., Гласс А. Сегнетоэлектрики и родственные им кристаллы. М.: Мир, 1981. 736 с.
- [19] Багиров М.А., Курбанов М.А., Шкилев А.В. // ЖТФ. 1971. Т. 41. Вып. 6. С. 25.
- [20] Багиров М.А., Бурзиев К.С., Курбанов М.А. // ЖТФ. 1979.
 Т. 49. Вып. 2. С. 30.
- [21] Койков С.Н., Цикин А.Н. Электрическое старение твердых диэлектриков. Л.: Энергия, 1968. 185 с.
- [22] Багиров М.А., Малин В.П., Абасов С.А. Электрическое старение твердых диэлектриков. Баку: Азерб. гос. изд-во, 1987.
- [23] Лунин В.В., Попович М.П., Ткаченко С.Н. Физическая химия озона. М.: Изд-во МГУ, 1998.
- [24] Зайдель И.П., Куренко Г.И. Электронно-оптические преобразователи. М.: Сов. радио, 1978. 150 с.
- [25] Базуткин В.В., Ларионов В.П., Пинталь Ю.С. Техника высоких напряжений, изоляция и перенапряжения в электрических системах. М.: Энергия, 1986. 451 с.
- [26] Еремин Е.Н. Элементы газовой электрохимии. М.: Изд-во МГУ, 1961. 250 с.
- [27] Абрамов Р.Х., Багиров М.А., Малин В.П., Осколонов В.А. // ВМС. Сер. Б. 1974. Т. 16. № 8. С. 604.