Низкочастотные флуктуации в стохастических процессах с $1/f^{\alpha}$ -спектром

© В.П. Коверда, В.Н. Скоков

01

Институт теплофизики УрО РАН, 620016 Екатеринбург, Россия e-mail: koverda@itp.uran.ru

(Поступило в Редакцию 21 февраля 2008 г.)

Представлены результаты численного исследования броуновского движения частицы в силовом поле потенциала, соответствующего взаимодействующим докритическому и закритическому фазовым переходам. Если интенсивность белого шума соответствует критичности индуцированного шумом перехода, то система стохастических дифференциальных уравнений описывает стационарные случайные процессы с обратно пропорциональными частоте f спектрами мощности флуктуаций: $S(f) \sim 1/f^{\alpha}$, где показатель α меняется в пределах $0.8 \le \alpha \le 1.8$. В таких же пределах меняется показатель степени β функции распределения $P(\tau) \sim \tau^{-\beta}$ длительности низкочастотных экстремальных флуктуаций, которые по многим свойствам аналогичны лавинам, рассматриваемым в моделях самоорганизованной критичности. Показано, что показатели степени α и β связаны соотношением $\alpha + \beta = 2$.

PACS: 05.40.Ca, 05.70.Fh

Введение

В разнообразных физических, химических, биологических и многих других системах часто наблюдаются стационарные случайные процессы со спектром мощности флуктуаций S, обратно пропрциональным частоте f [1,2]. Такие процессы принято обозначать термином "1/f-шум". Из радиофизики, где изучение такого вида шумов ведется уже более 80 лет, пришли термины "фликкер-шум" или "розовый шум", которые в настоящее время используются в других областях исследований. Часто под термином "1/f-шум" подразумевают не только строгую обратную пропорциональность спектра мощности флуктуаций частоте, но и случайные процессы, где эта зависимость имеет приближенный характер, например $S(f) \sim 1/f^{\alpha}$, значение α лежит в диапазоне $0.8 \le \alpha \le 2$. В тех случаях, когда важно указать измеренную спектральную зависимость и, следовательно величину α , используют термин " $1/f^{\alpha}$ -шум".

Экспериментальных данных для случайных процессов со строгой обратной пропорциональностью спектра частоте ($\alpha = 1$) известно не очень много. Здесь можно назвать флуктуации напряжения, когда электрический ток течет через резистор [2,3], и флуктуации в критических переходных режимах тепломассообмена при неравновесных фазовых переходах [4]. Примеров стационарных случайных процессов с $\alpha \neq 1$ гораздо больше. $1/f^{\alpha}$ -шум наблюдается в разнообразных системах, многие из которых показывают вспышки и лавинную динамику. Значительная часть энергии флуктуаций накапливается на низких частотах, и в системе возможны катастрофические выбросы.

В астрофизике такого типа случайные процессы описывают излучение квазаров и белых карликов, число солнечных пятен, в геофизике — землетрясения и наводнения, в биологии — сердечные и мозговые ритмы при некоторых заболеваниях, в экономике — финансовые потоки, колебания цен на рынках и курсов акций на биржах [1,2]. Можно найти и много других примеров.

Стационарные случайные процессы с $1/f^{\alpha}$ -спектром характеризуются масштабно инвариантным распределением флуктуаций. Хорошо известными примерами масштабно инвариантного распределения флуктуаций являются колмогоровская турбулентность [5] и динамический скейлинг в термодинамической критической точке. Но большинство примеров $1/f^{\alpha}$ -спектров относится к неравновесным явлениям.

В качестве общего механизма возникновения $1/f^{\alpha}$ шума в далеких от равновесия процессах была предложена концепция самоорганизованной критичности [6], которая описывает случайные процессы в системах с фрактальными пространственными и временными свойствами. Поэтому неравновесные процессы в такой системе характеризуются самоподобными распределениями флуктуаций. Но в отличие от термодинамической критической точки в таких системах не требуется тонкой подстройки параметров состояния. Флуктации в моделях самоорганизованной критичности не перекрываются, а следуют одна за другой.

Оригинальная модель с алгоритмами клеточных автоматов "кучи песка" [6], которая была предложена для демонстрации концепции самоорганизованной критичности, показала масштабно инвариантное распределение лавин, но спектр шума был пропорционален $1/f^2$ [7]. Другие варианты моделей саоорганизованной критичности могут давать иные спектральные зависимости от частоты [8,9]. При этом показатель α может зависеть от пространственной размерности системы [9]. Следует отметить, что спектры флуктуаций в моделях самоорганизованной критичности непосредственно не

измеряются, а вычисляются из распределений лавин, поэтому в таких работах наибольшее внимание уделено статистике лавин.

Настоящая работа посвящена условиям возникновения стационарных случайных процессов с $1/f^{\alpha}$ -спектром мощности в системе стохастических уравнений, описывающих флуктуации при взаимодействии докритического и закритического неравновесных фазовых переходов.

Основные свойства системы стохастических уравнений

Стационарные случайные процессы с 1/f-спектром мощности дает система двух дифференциальных стохастических уравнений [10]:

$$\frac{d\phi}{dt} = -\phi\psi^2 + \psi + \Gamma_1(t),$$

$$\frac{d\psi}{dt} = -\phi^2\psi + \lambda\phi + \Gamma_2(t),$$
(1)

которые описывают динамику флуктуаций в сосредоточенной системе. Здесь Γ_1 , Γ_2 — гауссовы δ -коррелированные шумы, которые в системе уравнений (1) могут иметь разные реализации, но одинаковые значения дисперсии; ϕ и ψ — динамические переменные.

Если определить потенциал

$$\Phi = \frac{1}{2}\phi^2\psi^2 - \phi\psi, \qquad (2)$$

то систему (1) можно переписать в виде:

$$\frac{d\phi}{dt} = -\frac{\partial\Phi}{\partial\phi} + \Gamma_1(t),$$

$$\frac{d\psi}{dt} = -\frac{\partial\Phi}{\partial\psi} + (\lambda - 1)\phi + \Gamma_2(t).$$
(3)

При преобразовании к новым динамически переменным: $\eta = (\psi + \phi)/2$ и $\theta = (\psi - \phi)/2$ потенциал Φ примет вид:

$$\Phi = \frac{1}{2}\eta^4 - \eta^2 + \frac{1}{2}\theta^4 + \theta^2 - \eta^2\theta^2,$$
 (4)

который характерен для взаимодействия докритического (с параметром порядка η) и закритического (с параметром порядка θ) фазовых переходов. В выражении (4) последнее слагаемое $\sim \eta^2 \theta^2$ учитывает взаимодействие параметров порядка, следовательно, закритического и докритического фазовых переходов в самом общем виде.

На рис. 1 показана зависимость потенциала Φ от динамических переменных ϕ и ψ . Рельеф потенциала представляет собой две гиперболические долины, разделенные барьером, низшая точка которого (перевал) находится в начале координат. А долины по мере удаления от начала координат сужаются все более круто

Рис. 1. Зависимость потенциала Φ от динамических переменных ϕ и ψ .

возрастяющими стенками. Частица броунирует (осуществляет броуновское движение) не просто в силовом поле, определяемом потенциалом (2), — коэффициент $\lambda > 1$ во втором уравнении системы (1) нарушает потенциальность силового поля, что показывает выражение (3). Поэтому на броуновское движение в потенциале (2) накладывается движение, связанное с некоторым нескомпенсированным потоком, и это делает второе уравнение системы управляющим.

При значении $\lambda = 2$ система уравнений (1) подробно исследована численными методами [11,12], имеется приближенное аналитическое решение [13]. В отсутствие белого шума асимптотика $\phi(t) \rightarrow 1/\sqrt{t}$ при $t \rightarrow \infty$, но наблюдается расходимость для $\psi(t) \rightarrow \sqrt{2t}$ в этом же пределе. Действие белого шума в системе (1) снимает расходимость $\psi(t)$ при $t \rightarrow \infty$. Броунирующая частица не может пройти по долине дальше от начала координат из-за сужающихся стенок, а при достаточной интенсивности белого шума отражается от них и возвращается к началу координат или даже переходит броунировать в другую долину.

Оптимальный уровень белого шума для достижения стационарности стохастичекого процесса определяется критическим состоянием индуцированного шумом перехода для функции распределения от комбинации, составленной из динамических параметров системы $\sqrt{\phi^2 \psi^2}$ [14]. Этот индуцированный шумом переход достаточно сильно растянут в рассматриваемой системе, так что стационарность стохастического процесса, а также полученные численным интегрированием уравнений (1) спектры флуктуаций динамических переменных $S_{\phi} \sim 1/f$ и $S_{\psi} \sim 1/f^2$ остаются строго обратно пропорциональными частоте и соответственно квадрату частоты в довольно широком диапазоне значений интенсивности белого шума и выбранных шагов интегрирования.

Если определить новую динамическую переменную как обратную величину от $\psi(t)$, например выражением

$$\chi(t) = \psi(t) / [\varepsilon + (\psi(t))^2],$$

где ε — малая величина, введенная в определение $\chi(t)$, чтобы избежать ее расходимости в моменты, когда $\psi(t)$ пересекает нуль. Спектр этой новой переменной обратно пропорционален частоте: $S_x \sim 1/f$ и совпадает со спектром S_{ϕ} , а функция распределения масштабно инвариантна для любых огрублений времени. Функция распределения переменной $\phi(t)$ похожа на гауссову, но имеет "длинные хвосты". При огрублении времени, т. е. в низкочастотном пределе, она также становится масштабно инвариантной и совпадающей с функцией распределения переменной $\chi(t)$.

Точная обратная пропорциональность частоте для спектров $S_{\phi} \sim 1/f$ и $S_{\chi} \sim 1/f$ является устойчивой для системы (1) при значении коэффициента $\lambda = 2$. Эту зависимость нельзя изменить даже большими возмущениями дисперсии белого шума, вводимого в уравнения. Зависимость 1/f сохраняется, если выполнены условия стационарности стохастического процесса [12]. При этих условиях добавление к уравнениям системы (1) небольшой постоянной величины также было безрезультатным. А введением достаточно большого возмущения можно было испортить всю обратную пропорциональность спектра от частоты, но не удавалось добиться даже малого изменения наклона этой зависимости.

Статистика низкочастотных флуктуаций с 1/*f*^{*a*}-спектром

Существование экспериментальных данных со спектральной зависимостью от частоты вида $S \sim 1/f^{\alpha}$ ставит задачу и их описания. В системе (1) это удается сделать в пределах $0.8 \le \alpha \le 1.2$, изменяя коэффициент λ в диапазоне $1.2 \le \lambda \le 4$.

На рис. 2 приведены спектры мощности флуктуаций переменных $\phi(t)$ и $\psi(t)$ при значении коэффициента $\lambda = 3$. Штриховая линия отвечает зависимости $1/f^{0.85}$.

Выясним, как изменение наклона частотной зависимости спектра меняет статистику эстремальных низкочастотных флуктуаций. Для этого релаксацию, которая наблюдается сразу после перехода броуновской частицей через потенциальный барьер в системе (1), найдем при различных значениях коэффициента λ. При этом используем численный метод усреднения по ансамблю разностей реализаций динамических переменных с различными начальными условиями, но одинаковыми векторами случайных чисел, аппроксимирующих белый шум [12,13]. Иными словами, нужно рассчитать траектории броуновских частиц для двух систем (1) с одинаковыми белыми шумами, но начальные условия для первой из частиц следует взять соответствующими одной долине потенциала, а для второй частицы соответствующими другой долине.

Рис. 2. Спектры мощности флуктуаций переменных S_{ϕ} (*I*) и S_{ψ} (2) при значении коэффициента $\lambda = 3$. Штриховая линия — зависимость ~ $1/f^{0.85}$.

В течение некоторого времени частицы будут броунировать каждая в своей долине и показывать каждая свою тректорию. Но стоит одной из частиц перевалить через барьер, как их траектории будут совпадать, поскольку броунирование "управляется" одинаковыми шумами в обеих системах. По существу, так находится время т первого прохождения через потенциальный барьер. После преодоления барьера "забываются" начальные условия. Легче всего определить момент перехода через барьер, рассматривая поведение разностей функций $\Delta \phi(t) = \phi_1(t) - \phi_2(t)$ и $\Delta \psi(t) = \psi_1(t) - \psi_2(t)$, которые становятся равными нулю в момент совпадения траекторий. Усредняя по ансамблю с различными реализациями белых шумов, получим гладкие траектории разностей $\langle \Delta \phi(t) \rangle \langle \Delta \psi(t) \rangle$. По этим траекториям и определяются релаксационные функции, а функция распределения $P(\tau)$ времени τ первого прохождения через потенциальный барьер дает сведения о статистике экстремальных низкочастотных флуктуаций при условии стационарности всего стохастического процесса. Они не перекрываются и следуют одна за другой, в этом смысле здесь имеется аналогия с лавинами, которые рассматриваются в моделях сомоорганизованной критичности.

Если шаг интегрирования выбран достаточно малым, то начальная стадия релаксации, определяемая по по-

ведению усредненной по ансамблю разности $\langle \Delta \phi(t) \rangle$, следует степенной зависимости. При этом показатель степени *n* всегда оставался равным 0.5, и не изменялся в расчетах для всех коэффициентов λ , т.е. для любых наклонов спектральных характеристик, которые определяются величной показателя α . По-видимому, такая релаксация определена близостью к критической точке индуцированного шумом перехода. Действительно, в работе [15] показано, что при индуцированных шумом переходах наблюдается такое же поведение параметров порядка, как и при фазовых переходах в теории Ландау.

Статистика низкочастотных флуктуаций, определяемая функцией распределения $P(\tau)$ времен τ первого прохождения через потенциальный барьер, разделяющий две долины, для коэффициента $\lambda = 3$ приведена на рис. 3. Из рисунка видно, что эта зависимость является степенной, и здесь также просматривается некотрая аналогия с распределением лавин в моделях самоорганизованной критичности. Прямая линия на рисунке соответствует зависимости ~ $\tau^{-1.15}$. Напомним, что для $\lambda = 2$ функция распределения ~ τ^{-1} .

Значения других показателей β зависимостей $P(\tau) \sim \tau^{-\beta}$ функций распределения времени прохождения через барьер от величины коэффициента λ , входящего во второе уравнение системы (1), приведены на рис. 4. На этом же рисунке показана зависимость коэффициента α , определяющего наклон частотной характеристики спектра мощности флуктуаций, от λ . Обращает на себя внимание тот факт, что при любом наклоне спектра сумма показателей α и β близка к двум:

$$\alpha + \beta = 2. \tag{5}$$

Аналогичное (5) скейлинговое соотношение между критическими индексами существует в самоорганизованной критичности [6]. Из таких выражений находит-

Рис. 3. Функция распределения $P(\tau)$ длительности τ низкочастотных флуктуаций для коэффициента $\lambda = 3$. Прямая линия отвечает зависимости $1/f^{1.15}$.

Рис. 4. Зависимость коэффициента α , определяющего наклон частотной характеристики спектра мощности (1), и коэффициента β , определяющего распределение длительности низкочастотных флуктуаций (2), от величины коэффициента λ .

ся спектральная зависимость флуктуаций в моделях клеточных автоматов самоорганизованной критичности. В случае системы стохастических уравнений показатели α и β определяются непосредственно из реализаций случайных процессов независимо один от другого.

Спектральная зависимость флуктуаций при повороте потенциала

Изменением коэффициента λ в системе (1) можно получить спектральные зависимости мощности флуктуаций $S(f) \sim 1/f^{\alpha}$, где α изменяется в пределах $0.8 \leq \alpha \leq 1.2$. Более сильный эффект изменения наклона спектральной зависимости в сторону увеличения ($\alpha > 1.2$) можно получить, если наряду с изменением коэффициента λ осуществить поворот потенциала (2). Поворот осуществляется линейным преобразованием динамических переменных. Заметим, что выражение для потенциала (4) отвечает повороту выражения (2) на $\pi/4$. Для расчетов эту процедуру легче осуществить, поворачивая не потенциал, а систему (1). При этом сразу использовалось выражение для численного интегрирования [12]:

$$\phi_{i+1} = (\phi_i + \psi_i \Delta t)(1 + \psi_i^2 \Delta t)^{-1} + I\xi_i \Delta t^{0.5},$$

$$\psi_{i+1} = (\psi_i + \lambda \phi_i \Delta t)(1 + \phi_i^2 \Delta t)^{-1} + I\xi_i \Delta t^{0.5}, \qquad (6)$$

где ξ_i и ξ_i — последовательность гауссовых случайных чисел с нулевым средним и единичным стандартным отклонением ($\sigma = 1$), которые моделируют внешний белый шум. Величина *I* корректирует интенсивность для разных шагов интегрирования Δt и углов поворота γ .

Журнал технической физики, 2009, том 79, вып. 6

Показатели, характеризующие наклон частотной зависимости спектральной плотности (α) и распределение длительности низкочастотных флуктуаций (β), при различных значениях параметров системы (6)

λ	γ	Ι	Δt	α	β
2	0	0.96	0.065	1	1
1.9	0.039	0.94	0.062	1.1	0.9
1.8	0.079	0.92	0.060	1.2	0.8
1.7	0.118	0.90	0.055	1.3	0.7
1.6	0.157	0.88	0.050	1.4	0.6
1.5	0.195	0.84	0.048	1.5	0.5
1.4	0.236	0.82	0.045	1.6	0.4
1.3	0.275	0.80	0.041	1.7	0.3
1.2	0.314	0.79	0.037	1.8	0.2

Система (6) должна быть дополнена преобразованием поворота:

 $\eta_i = \phi_i \cos(\gamma) + \psi_i \sin(\gamma), \ \theta_i = \psi_i \cos(\gamma) - \phi_i \sin(\gamma).$ (7)

Принятые для численных расчетов величины (λ, I, γ) и результаты расчетов для показателей α и β приведены в таблице.

Из таблицы видно, что показатель α , определяющий наклон спектральной характеристики, и показатель β , определяющий длительность низкочастотных флуктуаций, изменяются линейно при линейном изменении коэффициента λ и угла поворота γ . Использование поворота позволяет увеличить наклон спектральной характеристики до значения $\alpha = 1.8$. Соответствующий показатель длительности назкочастотных флуктуаций, определяемый распределением времен первого прохождения через потенцилаьный барьер, отвечает показателю $\beta = 0.2$. Величины *I* и Δt , показанные в таблице, определяются из условия критичности индуцированного шумом перехода по отношению к комплексу $\sqrt{\phi^2 \psi^2}$.

Соотношение (5) при поворотах также выполнялось. В отличие от результатов предыдущего раздела усредненная по ансамблю разность $\langle \Delta \eta(t) \rangle$ на начальной стадии релаксации следует также степенной зависимости $\sim t^{-n}$, но в отличие от результатов предыдущего раздела показатель *n* не оставался равным 0.5, а уменьшался примерно как $n \approx \beta/2$.

Заключение

В заключение можно отметить, что в настоящей работе приведены результаты численного исследования броунирования частицы в силовом поле потенциала, соответствующего взаимодействующим докритическому и закритическому фазовым переходам. Система стохастических уравнений (1) при интенсивности белого шума, которая соответствует критичности индуцированного шумом перехода при значениях коэффициента λ в диапазоне $1.2 \le \lambda \le 4$, и повороте потенциала описывает стационарные случайные процессы с $1/f^{\alpha}$ -спектрами мощности флуктуаций, где показатель α изменяется в пределах $0.8 \le \alpha \le 1.8$. В таких же пределах изменяется показатель степени β функции распределения $P(\tau) \sim \tau^{-\beta}$ продолжительности низкочастотных экстремальных флуктуаций, которые по многим свойствам аналогичны лавинам, рассматриваемым в моделях самоорганизованной критичности. Найдено соотношение, связывающее показатели степени α и β в стационарных стохастических процессах.

Работа выполнена при поддержке Российскогоф фонда фундаментальных исследований грант № 06-08-00034а и Программы фундаментальных исследований ОЭММПУ РАН.

Список литературы

- [1] Климонтович Ю.С. Статистическая теория открытых систем. М.: Янус, 1995.
- [2] Коган Ш.М. // УФН. 1985. Т. 145. № 2. С. 285–328.
- [3] Yakimov A.V., Hooge F.N. // Physika B. 2000. Vol. 291. N 1–2.
 P. 97–104.
- [4] Skokov V.N., Koverda V.H., Reshetnikov A.V., Skripov V.P., Mazheiko N.A., Vinogradov A.V. // Int. J. Heat and Mass Transfer. 2003. Vol. 46. P. 1879–1883.
- [5] Колмогоров А.Н. // ДАН СССР. 1941. Т. 30. № 4. С. 299–303.
- [6] Bak P., Tang C., Wiesenfeld K. // Phys. Rev. A. 1988. Vol. 38. N 1. P. 364–374.
- [7] Jensen H.J., Christinsen K., Fogedby H.C. // Phys. Rev. B. 1989. Vol. 40. N 10. P. 7425–7427.
- [8] Davidsen J., Schuster H.G. // Phys. Rev. E. 2002. Vol. 65. P. 026120-4.
- [9] Manna S.S. // J. Phys. A. 1991. Vol. 24. P. L363-L367.
- [10] Коверда В.П., Скоков В.Н., Скрипов В.П. // ЖЭТФ. 1998.
 Т. 113. № 5. С. 1748–1757.
- [11] Коверда В.П., Скоков В.Н. // ЖТФ. 2004. Т. 74. Вып. 9. С. 4–8.
- [12] Коверда В.П., Скоков В.Н. // ЖТФ. 2007. Т. 77. Вып. 11. С. 1–6.
- [13] Коверда В.П., Скоков В.Н. // ДАН. 2007. Т. 415. № 1. С. 39–43.
- [14] Коверда В.П., Скоков В.Н. // ДАН. 2002. Т. 386. № 2. С. 187–189.
- [15] Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987.