Аксептанс квадрупольного фильтра масс в верхнем острове стабильности при бигармоническом питании

© Н.В. Коненков, М.Н. Махмудов, Ю.В. Страшнов

Рязанский государственный университет им. С.А. Есенина, 390000 Рязань, Россия e-mail: n.konenkov@rsu.edu.ru

(Поступило в Редакцию 11 апреля 2008 г. В окончательной редакции 8 августа 2008 г.)

Численными методами исследованы динамические характеристики квадрупольного фильтра масс (КФМ) с параметрическим резонансным возбуждением колебаний ионов малым добавочным ВЧ-напряжением. Рассматривается верхний остров стабильности, формируемый полосами нестабильности следующих вдоль изолиний параметров стабильности невозмущенной первой зоны стабильности. Рассчитаны изолинии характеристических показателей на плоскости параметров острова. Представлены траектории ионов в характерных точках вблизи x и y границ острова, которые имеют вид биений. Определены параметры эллипсов в зависимости от начальной фазы влета ионов в ВЧ-поле. Показано, что их величины периодичны с периодом π при изменении сдвига фаз между основным и дополнительным ВЧ-напряжениями. Вследствие этого аксептанс КФМ и, следовательно коэффициент пропускания, имеют максимумы при изменении сдвига фаз. Поэтому необходима синхронизация бигармонического сигнала с целью увеличения пропускания КФМ.

PACS: 41.85.Lc

Введение

01:10

При бигармоническом питании квадрупольного фильтра масс (КФМ) на противоположные электроды (рис. 1) подают напряжения в противофазе вида

$$\Phi(t) = \pm \left[U - V \cos \Omega t - V' \cos \omega t \right], \tag{1}$$

где U и $V \cos \Omega t$ — постояное и переменное напряжения, $V' \cos \omega t$ — добавочное ВЧ-напряжение с низкой $\omega \ll \Omega$ или высокой частотой $\omega \approx \Omega$, Ω и ω — угловые частоты основного и добавочного ВЧ-напряжений, причем амплитуда V' = 0.005 - 0.04 V. Малое ВЧ-напряжение служит для параметрического резонансного возбуждения колебаний ионов при определенных кратных соотношениях частот $\nu = \omega/\Omega$ [1–4]. Воздействие квадрупольного параметрического резонанса приводит к появлению полос нестабильности в первой зоне стабильности, которые разбивают зону на острова стабильности. Наиболее сильные полосы нестабильности следуют вдоль линий изо- β характеристического показателя $\beta = K/P$, K = 1, ..., P - 1, когда величина β — простая несократимая дробь, К и Р — целые числа. В этом случае решение уравнения Матье, описывающего движение ионов в КФМ, периодично с периодом πP [5].

Условия резонансов высокого порядка при бигармоническом питании были получены в работе [2] и впервые экспериментально наблюдались в [6]. Экспериментальное исследование островов стабильности масс-спектрометрическим и оптическими методами представлено в работах [7–9]. Разделение ионов по удельным зарядам возможно только в верхнем острове стабильности без интерференции (перекрытия) масс спектров от соседних островов [7,8]. В динамике аксептанс КФМ представляет собой эллипс, вращающийся с угловой скоростью Ω на фазовой плоскости поперечных координат и скоростей [10–12]. При этом площадь эллипса (фазовый объем) сохраняется в соответствии с теоремой Лиувиля, изменяются его ориентация и эксцентриситет. Ионы, имеющие начальные условия внутри эллипса и влетающие в заданную

Рис. 1. Гиперболический профиль сечения электродов и схема питания КФМ: r_0 — радиус поля (радиус вписанной окружности между вершинами электродов), x и y — поперечные координаты.

фазу ВЧ-поля, в условиях области стабильности попадут на детектор и будут зарегистрированы. Поэтому фазовые площади, ограничиваемые эллипсами, называют эллипсами захвата.

Детально фазо-пространственная динамика движения ионов в ВЧ квадрупольном поле в режиме работы первой области стабильности рассмотрена в работах Доусона, Тодда и сотрудников [10,13,14], а также недавно Барановым представлен аналитический подход расчета эллипсов захвата КФМ в [15,16]. Применительно к высоким зонам стабильности аксептанс КФМ исследовался авторами [17–21].

Интегральная характеристика КФМ — коэффициент пропускания в режиме работы верхнего острова стабильности (четырехугольника) в зависимости от параметров возбуждения разрешающей способности, конфигурации круглых электродов изучалась на основе численного моделирования траекторий ионов [22]. Результаты моделирования подтверждаются экспериментом [7,8].

Знание аксептанса КФМ имеет как теоретический, так и практический интерес для целей согласования эмиттанса статического источника ионов и динамического аксептанса КФМ [14] в режиме работы четырехугольника стабильности, возбуждаемого дополнительным ВЧ-сигналом. Целью работы являлось исследование динамических характеристик, а именно зависимость параметров эллипсов захвата от фазы ξ_0 влета ионов в ВЧ-поле и влияние сдвига фаз α на аксептанс КФМ.

Остров стабильности

Уравнения движения ионов при бигармоническом питании (1) в островах стабильности имеют вид [1–4].

$$\frac{d^2x}{d\xi^2} + \left[a - 2q\cos 2(\xi - \xi_0) - 2q'\cos \left(2\nu(\xi - \xi_0) - 2\alpha\right)\right]x = 0; \qquad (2)$$
$$\frac{d^2y}{d\xi^2} - \left[a - 2q\cos 2(\xi - \xi_0)\right]x = 0; \qquad (2)$$

$$\frac{1}{\xi^2} - \left[a - 2q\cos 2(\xi - \xi_0) - 2q'\cos \left(2\nu(\xi - \xi_0) - 2\alpha\right)\right]y = 0, \quad (3)$$

где *x* и *y* — поперечные координаты (рис. 1). Безразмерные параметры выражаются следующим образом:

$$a = \frac{8eU}{m\Omega^2 r_0^2}, \quad q = \frac{4eU}{m\Omega^2 r_0^2}, \quad v = \frac{\omega}{\Omega}, \quad \xi = \frac{\Omega t}{2},$$
$$q' = \frac{4eV'}{m\Omega^2 r_0^2} = q \frac{V'}{V},$$

где е и m — заряд и масса иона, r_0 — радиус поля (см. рис. 1), ξ_0 — начальная фаза влета иона в ВЧ поле, α — сдвиг фаз между основным и малым добавочным ВЧ-напряжениями.

Метод расчета островов стабильности на плоскости a, q параметров при параметрическом резонансном возбужении колебаний ионов представлен в [4,7].

Рис. 2. Верхний остров стабильности с параметрами возбуждения: q' = 0.01 и v = 9/10. Пунктир — изолинии характеристических показателей β_x и β_y ; *АВ* и *DC* — границы полосы стабильности по *y* координате, *AD* и *BC* — по *x* координате. $\lambda = 0.16627$.

Верхний четырехугольник стабильности отсекается полосами нестабильности, следующими вдоль изолиний $\beta_x = (P-1)/P$ и $\beta_y = 1/P$, где β_x и β_y — параметры стабильности [10] (или характеристические показатели [5]).

На рис. 2 представлен верхний остров стабильности с параметрами q' = 0.01 и $v = \omega/\Omega = 9/10$. Пунктиром отмечены изолинии параметров стабильности β_x и β_y , определяющих спектральный состав колебаний ионов в хг и уг плоскостях анализатора. При анализе положительных ионов ось Х анализатора (рис. 1) проходит через пару противоположных электродов, на которые подают постоянное напряжение +U. Границы AB и DC определяют область устойчивых колебаний ионов (колебаний с конечной амплитудой) по координате Y; границы AD и BC — по координате X. Две перекрывающиеся полосы стабильности по х и у координатам формируют четырехугольник ADBC стабильности в плоскости а, q параметров. Возможна одномерная сепарация ионов по координате x, когда линия сканирования $a = 2\lambda q$ пересекает границы AD и BC. Координаты вершин A, B, C и D представлены на рис. 2. Рабочими вершинами являются вершина D или вершина B, где настройка на заданную разрешающую способность осуществляется путем изменения параметра $\lambda = U/V = a/2q$. Амплитуда V ВЧ-напряжения на противоположных электродах (рис. 1) измеряется относительно "земли".

Траектории ионов по x и y координатам показаны на рис. 3 для точек (a, q) вблизи четырех границ AB, DC, AD и BC с указанными начальными условиями. Для нашего случая траектория иона зависит от трех параметров a, q и сдвига фаз α , а также от пяти начальных условий — положения x_0 и y_0 , начальных скоростей x'_0 и y'_0 и начальной фазы ξ_0 влета ионов в ВЧ-поле. В идеальном поле с гиперболическим распределением

Рис. 3. Колебания ионов в плоскости xz вблизи границ AD(a) и BC(b) и в плоскости yz вблизи границ AB(c) и CD(d), где z — ось анализатора.

потенциала колебания ионов по *x* и *y* осям независимы, что отражено в уравнениях движения (2) и (3).

Как следовало ожидать, вблизи границ стабильности колебания ионов имеют характер биений с частотой, стремящейся к нулю при приближении к соответствующим границами стабильности. Вблизи границы *AD* (рис. 3, *a*) колебания ионов по оси *x* имеют сложный спектральный состав, среди которых можно выделить колебания с наибольшим периодом $T_1 \approx 180\pi$, а также минорные колебания с $T_2 \approx 10\pi$ и $T_3 \approx 2\pi$, где период π соответствует периоду $2\pi/\Omega$ основного ВЧ-напряжения (1). Вблизи внешней границы *BC* (рис. 3, *b*) характерны колебания с периодами 120π , 5π и π .

На рис. 3, с и d показана структура колебаний ионов по координате y. Вблизи внешней границы AB и внутренней — CD острова траектории по y оси имеют различный характер при одних и тех же начальных условиях. Период низкочастотных колебаний составляет $\approx 200\pi$, при этом четко выражены гармоника с периодами 10π и π (рис. 3, с).

Параметры эллипсов захвата

Уравнение эллипса захвата в безразмерной форме имеет вид [10]:

$$\Gamma u_0^2 + 2Au_0 u_0' + Bu_0'^2 = \varepsilon = \frac{1}{B_{\text{max}}},$$
(4)

где A, B, Γ — параметры эллипсов захвата, зависящие от рабочей точки (a, q) в острове стабильности от начальной фазы ξ_0 и сдвига фаз α , которые входят в уравнения движения ионов (2) и (3); u — поперечные координаты xили y, u'_0 — поперечные скорости $dx/d\xi$ ($\xi = 0$) или $dy/d\xi$ ($\xi = 0$), ε — аксептанс, численно равный площади эллипса, деленного на π, B_{max} — максимальное значение $B(\xi_0)$ на интервале ($0 - \pi$). Временная функция

$$g(\xi) = a - 2q \cos 2(\xi - \xi_0) - 2q' \cos \left(2\nu(\xi - \xi_0) - 2\alpha\right), \quad (5)$$

определяющая форму питающего напряжения, имеет наименьший совместный период $\pi P = 10\pi$. Поэтому

Рис. 4. Зависимость параметров A(1), B(2), $\Gamma(3)$ от начальной фазы влета ξ_0 для x траекторий (a) и для y траекторий (b) в точке области стабильности. Сдвиг фаз $\alpha = 0$.

рассчитываем параметры A, B, Γ на основе матрицы M-преобразования на интервале $(0 - \pi P)$. Матрица преобразования M [4] устанавливает связь между начальными u_0 и u'_0 и конечными координатами u и скоростями u'.

$$\begin{bmatrix} u \\ u' \end{bmatrix} = M \begin{bmatrix} u_0 \\ u'_0 \end{bmatrix} = \begin{bmatrix} m_{11}m_{21} \\ m_{21}m_{22} \end{bmatrix}_{P\pi} \begin{bmatrix} u_0 \\ u'_0 \end{bmatrix}$$
(6)

при начальных условиях $u_0 = 0$, $u'_0 = 1$ и $u_0 = 1$, $u'_0 = 0$. Таким образом, элементы матрицы M суть конечные значения координат и скоростей за время пролета ионов $\xi = \pi P$: $u = m_{12}$ и m_{22} при $u_0 = 0$, $u'_0 = 1$ и $u = m_{11}$ и m_{21} при $u_0 = 1$, $u'_0 = 0$. Зная элементы матрицы M, можно рассчитать параметр стабильности β и параметры A, B, Γ эллипсов захвата по следующим формулам [4,10]:

$$A = \frac{m_{11} + m_{22}}{2 \cos \pi \beta}, \quad B = \frac{m_{12}}{\sin \pi \beta}, \quad \Gamma = \frac{-m_{21}}{\sin \pi \beta},$$
$$\beta = \arccos\left(\frac{m_{11} + m_{22}}{2}\right) \frac{1}{\pi}.$$
(7)

Элементы A, B, Г матрицы преобразования M (6) можно рассчитать любым подходящим численным методом путем интегрирования уравнений движения (2) и (3). Для этих целей нами использовался численный метод Рунге-Кутта-Нюстрема-Дорманда-Принса (RK-N-DP) 6(7) порядка [23].

Параметры A, B, Г в зависимости от начальной фазы ξ_0 для x и y траекторий представлены на рис. 4 для примечательной точки с координатами a == 0.235 293 4 и q = 0.7047803, в которой параметры стабильности $\beta_x = \beta_y = 0.5$. Наблюдается асимметрия в поведении параметров A, B, Г эллипса захвата относительно смены знака при изменении ξ_0 . Максимумы $B_{x \max} = B_x(\xi_0 = \pi/2) = 15.3$ и $B_{y \max} =$ $= B_y(\xi_0 = 0) = 83.1$ зависимостей $B_x(\xi_0)$ и $B_y(\xi_0)$ равны площадям эллипсов захвата, выраженных в единицах $r_0^2 f [m^2/s]$, где $f = 2\pi/\Omega$ — циклическая частота основного ВЧ-напряжения.

Эллипсы захвата для x и y координат на фазовой плоскости поперечных координат и скоростей показаны на рис. 5 для внутренней точки острова a = 0.2352934, q = 0.7047803, когда сдвиг фаз $\alpha = 0$. Эллипсы вращаются с изменением начальной фазы влета ξ_0 иона

Рис. 5. Эллипсы захвата для x (*a*) и для y (*b*) траекторий. ξ_0 — начальная фаза влета иона в ВЧ-поля. Сдвиг фаз $\alpha = 0$.

Журнал технической физики, 2009, том 79, вып. 5

99

в ВЧ-поле с частотой Ω . Ионы, имеющие начальные координаты и скорость внутри эллипса, будут иметь амплитуды поперечных колебаний по соответствующей координате менее радиуса поля r_0 . В "центре" стабильности острова ($\beta_x = \beta_y = 0.5$) аксептанс ε_x в пять раз больше, чем ε_y . На рис. 5 эллипсы отмечены соответствующей фазой влета $\xi_0 = 0, 0.1\pi, \ldots, \pi$. В соответствии со сдвигом фаз на π ВЧ-напряжения на X и Yэлектродах (рис. 1) большие полуоси x и y эллипсов развернуты под углом $\pi/2$. Эллипсы по x координате (рис. 5, a) более равномерно распределены по фазовой плоскости, чем по y координате (рис. 5, b).

Аксептанс КФМ

Аксептанс КФМ в статике определяется как область на фазовой плоскости, ограничиваемая контурами, которые определены по заданному уровню пропускания [10,13]. Уровень пропускания соответствует вероятности P(u + du, u' + du') прохождения ионов через анализатор с начальными условиями u_0, u'_0 на площадке $[du \times du']$ за время, равное периоду π (периоду ВЧ-поля $T = 2\pi/\Omega$), где $u = x_0$ или $u = y_0$.

Определение положения контуров на фазовой плоскости начальных координат и скоростей (u_0, u'_0) по заданному уровню пропускания P производилось следующим образом. Рассчитывались параметры 100 эллипсов захвата $A(\xi_{0i})$, $B(\xi_{0i})$, $\Gamma(\xi_{0i})$, и B_{max} при начальных фазах взлета $\xi_{0i} = 0, \pi/100, 2(\pi/100), \dots, 100(\pi/100),$ $i = 0, 1, \dots, 100$. Если точка (u, u'_0) попадает в L эллипсов захвата, то полагаем, что искомая вероятность пропускания P = L/100. Нахождение граничной точки контура (u, u'_0) удобно в полярной системе координат:

$$u_0 = \rho \cos \vartheta, \quad u'_0 = \rho \sin \vartheta.$$
 (8)

В этом случае уравнение эллипса захвата (4) будет иметь вид:

$$\rho^{2}(A\cos^{2}\vartheta + B\sin 2\vartheta + \Gamma\sin^{2}\vartheta) = \frac{1}{B_{\max}},\qquad(9)$$

где ρ и ϑ — полярные радиус и угол на фазовой плоскости. Фиксируя величину ϑ , методом половинного деления отрезка ($\rho_k - \rho_{k-1}$)/2 считаем число эллипсов в интервале ($\rho_k - \rho_{k-1}$) до тех пор, пока текущий интервал не будет содержать точку $\rho = (\rho_k - \rho_{k-1})/2$, которая попадает в L эллипсов. Далее, подставив найденное значение ρ и заданную величину ϑ в (8), находим координаты u_0 и u'_0 точки контура пропускания в декартовой системе координат. Пропусканию 100% соответствует область перекрытия всех эллипсов захвата (рис. 5).

На рис. 6 показаны контуры для x и y координат, определенные по уровням пропускания 25, 50, 75 и 100% в острове стабильности в точке a, q ($\beta_x = \beta_y = 0.5$) при сдвиге фаз $\alpha = 0$. В соответствии с предыдущими результатами можно видеть, что фазовая область захвата ионов по координате x на порядок больше, чем по

Рис. 6. Области допустимых начальных поперечных координат x_0 и скоростей $x'_0(a)$, границы которых определены по уровням пропускания: 25, 50, 75 и 100%; b — тоже для у координаты. $a = 0.235\,293$ и $q = 0.704\,780\,31$, $\alpha = 0$.

Рис. 7. Зависимости величин эффективных аксептансов $\varepsilon x_{\text{eff}}$ (1), $\varepsilon y_{\text{eff}}$ (2) и комбинированного аксептанса $\varepsilon x_{\text{eff}} \varepsilon y_{\text{eff}} \cdot 10^3$ (3) от сдвига фаз α . $a = 0.235\,293$, $q = 0.704\,780$. Уровень пропускания 50%.

координате у. При согласовании данного аксептанса КФМ с эмиттансом источника ионов входной пучок ионов должен быть плоским в плоскости y_z анализатора и слабо расфокусированным.

Будем называть эффективным аксептансом $\varepsilon_{\rm eff}$ КФМ площадь на фазовой плоскости, ограничиваемой контуром пропускания по заданному уровню (рис. 6). Влияние на аксептанс сдвига фаз α между основным $V \cos \Omega t$ и малым дополнительным $V' \cos(\omega t + \alpha)$ ВЧ-напряжениями КФМ иллюстрируется на рис. 7. Здесь показаны эффективные значения аксептансов $\varepsilon_{x_{\rm eff}}$ и $\varepsilon_{y_{\rm eff}}$, определенные по 50% уровню, в зависимости от сдвига фаз α . Изменения $\varepsilon_{x_{\rm eff}}$ и $\varepsilon_{y_{\rm eff}}$ периодичны с периодом π основного напряжения и максимумы сдвинуты на $\pi/2$. Относительное изменение эффективного аксептанса составляет ($\varepsilon_{\rm max} - \varepsilon_{\rm min}$)/ $\varepsilon_{\rm max} \approx 10$; комбинированного, равного произведению $\varepsilon_{x_{\rm eff}} \varepsilon_{y_{\rm eff}}$ — приблизительно 15%. Максимум пропускания, определяемый комбинированным аксептансом, соответствует сдвигу фаз $\alpha = 0.5 - 0.6\pi$.

Заключение

Обнаружено значительное почти на порядок различие в аксептансах по коодинатам x и y в режиме работы верхнего острова стабильности КФМ. Относительное изменение эффективного аксептанса составляет всего лишь 15%. Оптимальный сдвиг фаз между двумя ВЧ-сигналами составляет $0.5-0.6\pi$. Аксептанс КФМ периодичен с периодом π , насмотря на то что период дополнительного ВЧ-напряжения равен 10π .

В настоящем анализе не учтено влияние входного краевого поля на аксептанс КФМ. В обычном режиме работы в первой области и высших зонах стабильности влияние краевых полей сводится в деформации контуров пропускания, когда контуры смещаются в область отрицательных значений x'_0 и y'_0 КМФ [10,14,17–21]. Исследование эффекта сдвига фаз на пропукание КФМ при наличии краевых полей будет продолжено.

Список литературы

- Alfred R.L., Londry F.A., March R.E. // Int. J. Mass Spectrom. Ion Proc. 1993. Vol. 124. P. 171–185.
- [2] Sudakov M.Yu., Konenkov N.V., Douglas D.J., Glebova T. // J. Am. Soc. Mass Spectrom. 2000. Vol. 11. P. 10–18.
- [3] Sudakov M.Yu. // Tech. Phys. Lett. 2000. Vol. 26. N 10. P. 870–872.
- [4] Konenkov N.V., Sudakov M.Yu., Douglas D.J. // J. Am. Soc. Mass Spectrom. 2002. Vol. 13. P. 597–613.
- [5] Abramovitz M., Stegun I. Handbook of Mathematical Functions. Appl. Math. Ser. Vol. 55. Washington, DS: National Bureau of Standards, 1964. P. 557.
- [6] Collings B.A., Douglas D.J. // J. Am. Soc. Mass Spectrom. 2000. Vol. 11. P. 1016–1022.
- [7] Konenkov N.V., Cousins L.M., Baranov V.I., Sudakov M.Yu. // Int. J. Mass Spectrom. 2001. Vol. 208. P. 17–27.

- [8] Baranov V.I., Konenkov N.V., Tunner S.D. // Plasma Sourse Mass Spectrometry. The New Millemium / Ed. by J. Holland, S.D. Tanner. Royal Society of Chemistry: Cambridge, 2001. P. 63–72.
- [9] Zhao X., Ryjkov V.L., Schuessler H.A. // Phys. Rev. A. 2002. Vol. 66. P. 1–7.
- [10] Dawson P.H. Quadrupole Mass Spectrometry and its Applications. N.Y.: American Institute of Physics. 1995. 377 p.
- [11] Слободенюк Г.М. Квадрупольные масс-спектрометры. М.: Атомиздат, 1974. 272 с.
- [12] March R.E., Hughes R.J. Quadrupole Storage Mass Spectrometry, N Y: John Willey, 1989. 471 p.
- [13] Todd F.J., Waldren F.M., Freer D.A., Turner J.F. // Ion Phys. 1980. Vol. 35. P. 107–150.
- [14] Dawson P.H. // Int. J. Mass Spectrom. Ion Process. 1990. Vol. 100. P. 41–50.
- [15] Baranov V.I. // J. Am. Mass Spectrom. 2003. Vol. 14. P. 818–824.
- [16] Baranov V.I. // J. Am. Mass Spectrom. 2004. Vol. 15. P. 48–54.
- [17] Коненков Н.В., Могильченко Г.А., Силаков С.С. // ЖТФ. 1993. Т. 62. Вып. 9. С. 165–170.
- [18] Konenkov N.V. Int. J. Mass Spectrom. Ion Process. 1993. Vol. 123. P. 101–105.
- [19] Коненков Н.В. // ЖТФ. 1997. Т. 67. Вып. 10. С. 121-124.
- [20] Douglas D.J., Konenkov N.V. // J. Am. Soc. Mass Spectrom. 1998. Vol. 9. P. 1074–1080.
- [21] Du Z., Douglas D.J., Konenkov N.V. // J. Anal. Atom. Spectrom. 1999. Vol. 14. P. 1111–1119.
- [22] Glebova T., Konenkov N.V. // European J. Mass Spectrom. 2002. Vol. 8. P. 201–205.
- [23] Хайрер Э., Нерсет С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. М.: Мир, 1990. 512 с.