05;06;09;12 Влияние формы, химического и фазового состава частиц на основе Fe на СВЧ-характеристики композитов с диэлектрической матрицей

© Е.П. Елсуков,¹ К.Н. Розанов,² С.Ф. Ломаева,¹ А.В. Осипов,² Д.А. Петров,² С.Н. Старостенко,² А.С. Шуравин,¹ А.Л. Ульянов,¹ А.А. Чулкина,¹ Д.В. Сурнин¹

¹ Физико-технический институт УрО РАН, 426000 Ижевск, Россия ² Институт теоретической и прикладной электродинамики РАН, 125412 Москва, Россия e-mail: krozanov@yandex.ru

(Поступило в Редакцию 15 апреля 2008 г.)

Исследованы структура и СВЧ магнитные свойства порошков Fe, измельченных в аргоне и ацетоне, а также механически сплавленных в аргоне аморфных порошков Fe–Si–C и Fe–Co–Si–C. Исследование проведено методами рентгеновской дифракции, мёссбауэровской спектроскопии, гранулометрического и микроскопического анализов, магнитостатических измерений и СВЧ-спектроскопии. Целью исследования было выявление роли основных факторов, определяющих СВЧ материальные параметры композитных материалов с исследованными порошками в диапазоне частот 0.1–3 GHz, а именно формы, размера, химического и фазового состава частиц порошков. Показано, что основное различие СВЧ магнитной проницаемости исследованных порошков в низкочастотном диапазоне (до 3 GHz) возникает прежде всего из-за различия формы частиц. На более высоких частотах магнитные свойства обусловлены в основном скин-эффектом и определяются размером частиц порошков. Различия в СВЧ-свойствах композитов, вызванные различающимися магнитными свойствами материала включений, не столь велики и маскируются расмотренными выше эффектами.

PACS: 41.20.-q

Введение

СВЧ магнитные свойства нанокристаллических магнитных сплавов на основе железа, полученных методом высокоэнергетического размола, являются в последнее время объектом интенсивных исследований [1–6]. В композитных материалах с наполнением такими порошками могут быть получены высокие значения СВЧ магнитной проницаемости $\mu = \mu' + i\mu''$ [6]. Такие композиты рассматриваются как перспективные материалы в качестве поглотителей электромагнитных волн [7] или магнитных подложек для полосковых антенн [8].

Хорошо известно, что магнитная проницаемость композитного материала зависит от проницаемости включений и морфологии композита, т.е. концентрации, формы и корреляции в расположении включений. В статьях [1-6] показано, что форма и размер частиц в значительной степени определяют значения магнитной проницаемости композита. Влияние химического и фазового состава порошков, используемых в качестве наполнителя в композите с диэлектрической матрицей, на свойства композита изучено в меньшей степени. В работе [6] было обнаружено, что использование вместо α-Fe сплава α-Fe₈₇Si₁₃ при одинаковой форме и размерах частиц приводит к небольшому возрастанию мнимой части магнитной проницаемости μ'' в диапазоне частот $f > 1 \,\mathrm{GHz}$, несмотря на меньшее значение намагниченности насыщения сплава *α*-Fe₈₇Si₁₃. Для выяснения закономерности полученного результата необходимы дальнейшие исследования на порошках с различным химическим и фазовым составом.

Известно [9], что среда и время измельчения в высокоэнергетических мельницах могут в значительной степени влиять не только на форму и размер частиц Fe, но и существенно изменять химический состав измельченного порошка. При этом каждая частица представляет собой нанокомпозит, состоящий из фаз с различным химическим составом. Другой способ механоактивации — механическое сплавление позволяет получать однофазные пересыщенные твердые растворы [10] или аморфные сплавы [11] с большой концентрацией немагнитных элементов, таких как C, Al, Si и т.д.

Целью настоящей работы было получение и исследование порошков Fe измельчением в инертной (Ar) и жидкой органической (ацетон) среде, а также механически сплавленных порошков Fe–Si–C и Fe–Co–Si–C. Исследованы структура, фазовый и химический состав, форма и размер частиц, магнитостатические свойства полученных порошков, а также CBЧ-характеристики композитных материалов, наполненных исследуемыми порошками, в диапазоне частот от 0.1 до 3 GHz. На основании полученных результатов сделаны выводы об основных факторах и механизмах, определяющих величину CBЧ магнитной проницаемости и вид ее частотной зависимости.

Методика эксперимента

В качестве исходных материалов использованы высокочистые порошки Fe, Co, Si и C (графит) с размерами частиц около 300 µm. Механическая обработка осуществлялась в шаровой планетарной мельнице Пульверизетте-7. В качестве материала сосудов и шаров использовалась упрочненная шарикоподшипниковая сталь ШХ-15, содержащая 1 mass.% С и 1.5 mass.% Сг (остальное Fe). В сосуд помещали 10 д порошка, отношение масс шары/порошок было близким к 10:1. Измельчение порошка Fe проводили в инертной среде (Ar) и ацетоне. В последнем случае сосуд полностью заполнялся жидкостью. Механическое сплавление смесей порошков Fe, Co, Si и C в атомных соотношениях Fe_{71.4}Si_{14.3}C_{14.3} и (Fe_{0.8}Co_{0.2})_{71.4}Si_{14.3}C_{14.3} проводили в аргоне. Время механической обработки во всех случаях составляло 24 h. Таким образом, в настоящей работе сравниваются свойства четырех порошков: порошков Fe после измельчения в Ar (образец 1) и в ацетоне (образец 2), а также порошков, полученных механическим сплавлением в Ar смесей Fe-Si-C и Fe-Co-Si-C (образцы 3 и 4 соответственно).

Для анализа формы и размеров частиц порошка после механической обработки применялся оже-спектрометр JAMP-10S в режиме вторично-электронного изображения. Рентгеноструктурный анализ проводился на дифрактометре ДРОН-3 в СиКа монохроматизированном излучении (монохроматор — графит). При нахождении структурных и субструктурных параметров форму рефлексов *K*α₁ и *K*α₂ аппроксимировали функциями Фойгта. Мёссбауэровские спектры получены на спектрометре ЯГРС-4М в режиме постоянных ускорений с источником γ -излучения ⁵⁷Со в матрице Сг. Функции P(H) распределения сверхтонких магнитных полей (СТМП) найдены с использованием обобщенного регулярного алгоритма [12]. Для получения образцов для рентгеновских и мёссбауэровских измерений необходимое количество порошка насыпали на плоскую подложку и заливали клеевым раствором. Кривые намагничивания в полях до 16-18 kOe измеряли на вибрационном магнитометре; при этом порошок насыпали в медную капсулу диаметром 6 mm и высотой 2 mm и заливали жидким парафином, а магнитное поле прикладывали вдоль плоской капсулы.

Для проведения СВЧ-измерений были изготовлены образцы композитных материалов, содержащие около 20 vol.% исследуемых порошков. В качестве связующего композитов использовался парафин. Процесс приготовления композитных образцов заключался в механическом перемешивании порошков в расплавленном парафине. Измерения СВЧ диэлектрической и магнитной проницаемостей композитных материалов проводили с использованием векторного анализатора цепей Hewlett Раскагd 8720 в диапазоне частот от 0.1 до 3 GHz. Образцы помещали в коаксиальную измерительную ячейку, имеющую диаметр центральной жилы 3 mm и диаметр внешнего электрода 7 mm. Изготовленные образцы полностью заполняли сечение ячейки и имели толщину от 1 до 5 mm. Диэлектрическую и магнитную проницаемости образцов определяли из результатов измерения коэффициентов отражения при расположении образца непосредственно на короткозамыкателе измерительной линии и на заданном расстоянии от короткозамыкателя [13].

Все измерения выполнены при комнатной температуре.

Результаты и их обсуждение

На рис. 1 представлены изображения частиц исследованных порошков. Частицы образца 1 имеют камневидную форму с неоднородным распределением по размерам от 5 до $40\,\mu$ m. Использование ацетона в качестве среды измельчения (образец 2) приводит к значительному уменьшению размера частиц и существенно более однородному распределению по размерам в интервале $1-4\,\mu$ m. Форму частиц можно определить как камневидную. Образец 3 имеет частицы как камневидной, так и пластинчатой формы, а частицы образца 4 имеют преимущественно пластинчатую форму. Размеры частиц образцов 3 и 4 находятся в интервале от 2 до $15\,\mu$ m.

Рентгеновские дифрактограммы приведены на рис. 2. Дифрактограмма образца *1* показывает присутствие только объемно-центрированной (ОЦК) фазы. В образце *2* вместе с ОЦК-структурой обнаруживается еще одна фаза с рефлексами слабой интенсивности. В соответствии с штрихдифрактограммой, приведенной внизу рис. 2, *2*, можно предположить, что вторая фаза является цементитом Fe₃C. Однако на основании только рентгеновских данных не удалось установить структурные

Рис. 1. Изображения частиц во вторичных электронах. Номера образцов порошка приведены на рисунке.

Рис. 2. Рентгеновские дифрактограммы образцов. Номера образцов порошка приведены на рисунке.

параметры и количество второй фазы. Параметр ОЦКрешетки для образцов 1 и 2 находится в пределах 0.2868 ± 0.0002 nm и совпадает с параметром, найденным ранее в [14] для нанокристаллического α -Fe. Средний размер зерен в ОЦК-фазе уменьшается от 11 nm (образец 1) до менее чем 3 nm (образец 2). Вид дифрактограмм образцов 3 и 4 позволяет охарактеризовать их как рентгеноаморфные.

Мёссбауэровские спектры образцов и найденные из них функции распределения СТМП P(H) представлены на рис. 3. Для образца 1 не обнаружено никаких изменений по сравнению со стандартными образцами Fe, используемыми для калибровки мёссбауровских спектрометров. Спектр образца 2 кроме α -Fe ($H = 330 \, \mathrm{kOe}$) содержит еще две составляющие: компонента с СТМП $H = 190 \,\mathrm{kOe}$ и компонента с широким распределением СТМП в интервале 0-300 kOe со средним значением $\langle H \rangle \approx 195 \, \mathrm{kOe.}$ Широкое распределение СТМП свидетельствует о наличии большого количества неэквивалентных локальных конфигураций атомов Fe в этой фазе и является характерным для аморфных или разупорядоченных кристаллических структур. Обозначим эту фазу АФ. В ней кроме железа присутствуют кислород и углерод, так как после отжига при 550°C (1 h) в образце формируется цементит Fe₃C и магнетит Fe₃O₄ [9]. В чистом цементите Fe₃C СТМП H = 205-210 kOe [15,16], поэтому компоненту с полем 190 kOe можно приписать цементиту Fe₃C(O), в котором часть атомов С замещена атомами О. Таким образом, порошок Fe, измельченный в ацетоне, представляет собой нанокомпозит α -Fe/Fe₃C(O)/A Φ с процентным содержанием атомов Fe в нем 51/9/40 соответственно. Спектры и функции P(H)образцов 3 и 4 являются типичными для однофазных аморфных или разупорядоченных кристаллических сплавов с немагнитными *s p*-элементами Si и C.

На рис. 4 представлены приведенные кривые намагничивания $\sigma/\sigma_s(H)$ исследуемых порошков, нормированные на их намагниченность насыщения σ_s . Кривая 1 соответствует образцам 1 и 2, кривая 2 — образцам 3

Рис. 3. Мёссбауэровские спектры и функции P(H) образцов. Номера образцов порошка приведены на рисунке.

Рис. 4. Кривые намагничивания образцов. Кривая *1* соответствует образцам *1* и *2*, кривая *2* — образцам *3* и *4*.

127

Рис. 5. Частотные зависимости действительных (ε', μ') и мнимых (ε'', μ'') частей диэлектрической (ε) и магнитной (μ) проницаемостей для композитов, содержащих 20 vol.% исследуемых образцов. Номера образцов порошка приведены на рисунке. Измеренные значения показаны символами. Сплошные линии — лоренцевы аппроксимации измеренных частотных зависимостей, пунктир — оценка СВЧ-потерь из распределения полей анизотропии.

и 4. Различие этих кривых обусловлено анизотропной формой частиц механически сплавленных порошков и соответственно появлением текстуры "укладки" при приготовлении образцов [6]. Абсолютные значения удельной намагниченности насыщения σ_s приведены в

Характеристики иследуемых порошков: К — камневидная форма, П — пластинчатая (чешуйчатая) форма; d — интервал размеров частиц; $\langle L \rangle$ — средний размер зерен; P — фазовый состав (доля атомов в фазах); x — концентрация немагнитных s p-элементов в образцах; σ_s — удельная намагниченность насыщения

Параметр	Образец 1	Образец 2	Образец З	Образец 4
Форма частиц	К	К	$K + \Pi$	П
$d, \mu m$	5 - 40	1 - 4	2 - 15	2 - 15
$\langle L \rangle$, nm	11	< 3	—	—
$P_{\rm Fe},\%$	100	51	—	—
$P_{\text{Fe3C(O)}},\%$	—	9	—	—
$P_{A\Phi},\%$	—	40	100	100
<i>x</i> , at.%	0	~ 13	28.6	28.6
σ_s , A · m ² /kg	210	165	137	130

таблице вместе с другими важными количественными характеристиками, полученными при аттестации образцов. Уменьшение σ_s в образце 2 по сравнению с образцом 1, очевидно, обусловлено наличием фаз Fe₃C(O) и АФ с существенно меньшими собственными значениями $\sigma_s \approx 130-150 \,\mathrm{A} \cdot \mathrm{m}^2/\mathrm{kg}$ [17]; общее количество немагнитных элементов (С и О) в образце 2 может быть оценено приблизительно как 13 at.%. Еще большее снижение σ_s обнаружено в аморфных сплавах Fe–Si–C и Fe–Co–Si–C, в которых количество немагнитных элементов составляет 28.6 at.%.

На рис. 5 приведены частотные зависимости диэлектрической и магнитной проницаемости композитных материалов, содержащих 20 vol.% исследуемых порошков. Мнимая часть диэлектрической проницаемости таких композитов существенно зависит от состояния поверхности частиц порошка, от контактов между этими частицами и пр.; кроме того, эта величина характеризуется большой погрешностью измерения, поэтому данные о мнимой части диэлектрической проницаемости не будут использованы в дальнейшем рассмотрении. Действительная часть диэлектрической проницаемости не зависит от частоты, а магнитная проницаемость имеет ярко выраженную частотную дисперсию в пределах исследованного частотного диапазона.

Частотная зависимость СВЧ магнитной проницаемости может определяться следующими физическими механизмами: резонанс доменных границ (РДГ), естественный ферромагнитный резонанс (ФМР) и скин-эффект на проводящих включениях. Соотношение между вкладами от этих механизмов зависит от формы, состава и концентрации включений, частоты и многих других факторов.

Влияние скин-эффекта на вид частотной зависимости магнитной проницаемости растет с увеличением размера и проводимости частиц включений и частоты и приводит к тому, что частотный пик магнитных потерь сильно размывается [18], так что мнимая часть магнитной проницаемости слабо зависит от частоты. Именно такой вид магнитной дисперсионной кривой наблюдается для образца 1. Действительно, из всех исследованных образцов образец 1 характеризуется самым большим размером частиц (а также самым широким распределением частиц по размеру, что может способствовать размыванию пика магнитных потерь) и самым низким содержанием немагнитных элементов, т.е. наибольшей проводимостью. Особенности частотной зависимости, связаненые с ФМР и РДГ, неразличимы на фоне значительного скин-эффекта.

Для остальных образцов мнимая часть магнитной проницаемости монотонно растет с частотой в пределах исследованного частотного диапазона, что свидетельствует о слабом скин-эффекте. В этом случае частотная зависимость магнитной проницаемости часто описывается суммой двух лоренцевых кривых [19], более низкочастотная из которых отвечает за РДГ, а более высокочастотная за ФМР. Соответствующие аппроксимации для образцов 2-4 показаны на рис. 5 сплошными линиями; видно, что аппроксимации хорошо совпадают с измеренными значениями. Для образца 2 РДГ отсутствует, что связано с тем, что размер частиц этого порошка близок к пределу однодоменности — 1 µm. Параметры лоренцева пика, связанные с ФМР, близки для всех трех образцов, незначительно различаясь лишь по амплитуде. Частота, на которой расположен пик магнитных потерь, может быть оценена из аппроксимаций как 4 GHz.

Частоту ФМР можно также оценить на основе кривых намагничивания, приведенных на рис. 4. Известно [20], что распределение полей анизотропии $p(H_a)$ в магнитном материале может быть найдено из кривой начального намагничивания $\sigma(H)$ по формуле:

$$p(H_a) = -H \frac{d^2 \sigma(H)}{dH^2}; \tag{1}$$

при этом выражение (1) описывает как кристаллическую анизотропию частиц, так и анизотропию, связанную с формой частиц. После этого, предполагая, что форма частиц близка к сферической, так что частота ФМР

равна $f_r = \gamma H_a$ (где $\gamma = 2.8 \text{ GHz/kOe}$), и пренебрегая собственной шириной линий ФМР, частотную зависимость мнимой части магнитной проницаемости, связанную с ферромагнитным резонансом, можно оценить как $\mu''(f) \propto p(H_a/\gamma)$. Коэффициент пропорциональности в этой формуле определяется условием согласия статического значения магнитной проницаемости с экспериментальными данными. Применение уравнения (1) к обеим кривым на рис. 4 приводит к близким результатам с максимумом распределения полей анизотропии вблизи 2.5 kOe, что соответствует пику зависимости $\mu''(f)$ при 7.5 GHz. Частотная зависимость мнимой части магнитной проницаемости, полученная таким образом для образца 2, показана на рис. 5, *d* пунктиром.

Пунктирная кривая на рис. 5 значительно отклоняется от измеренных значений. Причинами этого могут быть пренебрежение собственной шириной пика, зависимость резонансной частоты от формы частицы для несферических частиц, а также скинирование. Из перечисленных причин только скин-эффектом можно объяснить различие приведенных выше оценок частоты, на которой расположен пик магнитных потерь. Таким образом, можно сделать заключение, что в образцах 2-4 ход частотной зависимости магнитной проницаемости в области частот выше 3 GHz определяется в основном скин-эффектом. То, что согласно аппроксимации максимум магнитных потерь в этих образцах расположен на близких частотах, можно объяснить тем, что наименьший размер частиц порошков, который и определяет величину скинэффекта, близок по порядку величины: из рис. 1 видно, что во всех трех образцах он составляет приблизительно 1 μm.

Дальшейшие выводы могут быть сделаны из сопоставления действительных частей диэлектрической и магнитной проницаемости. Известно, что проницаемость композита тем выше, чем больше доля частиц несферической формы. Из рассматриваемых материалов максимальное значение обеих проницаемостей имеет образец 4, в котором все частицы пластинчатые. Для образца 3 значения обеих проницаемостей ниже. При этом различие в диэлектрической проницаемости между образцами 3 и 4 значительно, в магнитной — меньше, что связано с высокой электрической поляризуемостью проводящих включений и конечностью их магнитной проницаемости. Проницаемость образца 2 выше, чем у образца 1, несмотря на то что форма частиц обоих порошков близка к сферической. Причиной этого может являться образование кластеров, имеющих несферическую форму, в композите с наполнением порошком 2 из-за магнитной агломерации однодоменных частиц.

Заключение

Таким образом, основное различие СВЧ-свойств исследованных порошков в низкочастотном диапазоне (до 3 GHz) возникает прежде всего из-за различия формы частиц, связанного с их различной ковкостью. На более высоких частотах магнитные свойства обусловлены в основном скин-эффектом и определяются размером частиц порошков. Различия в СВЧ-свойствах композитов, вызванные различающимися магнитными свойствами материала включений, не столь велики и маскируются рассмотренными выше эффектами.

С точки зрения практического применения порошки с частицами пластинчатой формы, имеющие высокие магнитные потери на СВЧ, могут быть эффективно применены для подавления высокочастотного магнитного поля, в том числе для создания поглотителей электромагнитных волн. Частицы малого размера, обладающие низкими потерями, могут быть полезны для концентрации поля в антеннах, резонаторах и т.д.

Работа выполнена при финансовой поддержке РФФИ (проект 06-08-00788).

Список литературы

- Yoshida S., Sato M., Sugawara E., Shimada Y. // J. Appl. Phys. 1999. Vol. 85. N 8. P. 4636–4638.
- [2] Yoshida S., Ando S., Shimada Y. et al. // J. Appl. Phys. 2003.
 Vol. 93. N 10. P. 6659–6661.
- [3] Zhou P.H., Deng L.J., Xie J.L. et al. // J. Magn. Magn. Mater. 2005. Vol. 292. P. 325–331.
- [4] Kim S.-S., Kim S.-T., Yoon Y.-C., Lee K.-S. // J. Appl. Phys. 2005. Vol. 97. P. 10F905.
- [5] Zhang B., Feng Y., Xiong J. et al. // IEEE Trans. Magn. 2006. Vol. 42. N 7. P. 1778–1781.
- [6] Елсуков Е.П., Розанов К.Н., Ломаева С.Ф. и др. // ФММ. 2007. Т. 104. № 3. С. 261–269.
- [7] Розанов К.Н., Старостенко С.Н. // РЭ. 2003. Т. 48. № 6. С. 715–723.
- [8] Ikonen P.M.T., Rozanov K.N., Osipov A.V. et al. // IEEE Trans. Antennas Propagat. 2006. Vol. 54. N 11. Pt 2. P. 3391–3399.
- [9] Ломаева С.Ф. Механизмы формирования структуры, фазового состава и свойств наносистем на основе железа при механоактивации в органических средах. Дисс. док. физ.-мат. наук. Ижевск, 2007.
- [10] Yelsukov E.P., Dorofeev G.A. // J. Mater. Sci. 2004. Vol. 39. P. 5071.
- [11] Yelsukov E.P., Maratkanova A.N., Lomayeva S.F. et al. // J. Alloys and Compounds. 2006. Vol. 407. P. 98.
- [12] Voronina E.V., Ershov N.V., Ageev A.L., Babanov Yu.A. // Phys. Stat. Sol. (b). 1990. Vol. 160. P. 625.
- [13] Розанов К.Н., Симонов Н.А., Осипов А.В. // РЭ. 2002. Т. 47. № 2. С. 229–238.
- [14] Елсуков Е.П., Дорофеев Г.А., Ульянов А.И. и др. // ФММ. 2001. Т. 91. № 3. С. 46.
- [15] Huffman G.P., Errington P.R., Fisher R.M. // Phys. Stat. Sol. 1967. Vol. 22. P. 473.
- [16] Ron M., Mathalone Z. // Phys. Rev. B. 1971. Vol. 4. N 3. P. 774.
- [17] Yelsukov E.P., Ulyanov A.L., Zagainov A.V., Arsentyeva N.B. // J. Magn. Magn. Mater. 2003. Vol. 258–259. P. 513.

- [18] Lagarkov A.N., Osipov A.V., Rozanov K.N., Starostenko S.N. // Proc. of Symp. R: Electromagnetic Materials. 3rd Int. Conf. on Materials for Advanced Technologies (ICMAT 2005). Singapore, July 3–8. 2005. P. 74–77.
- [19] Li Z.W., Wu Y.P., Lin G.Q. // J. Appl. Phys. 2007. Vol. 102. P. 083 908.
- [20] Bottoni G., Candolfo D., Cecchetti A. // J. Appl. Phys. 1997.
 Vol. 81. N 8. P. 3794–3796.