03;04;09;12 Возбуждаемый полем квазиоптического электромагнитного пучка глубоко подкритический СВЧ-разряд в сверхзвуковой струе воздуха

© Д.В. Бычков, Л.П. Грачев, И.И. Есаков

Московский радиотехнический институт РАН, 117519 Москва, Россия

(Поступило в Редакцию 12 марта 2008 г.)

Представлены результаты исследования электрического разряда в сверхзвуковой струе воздуха. Разряд зажигается в линейнополяризованном квазиоптическом электромагнитном пучке СВЧ-диапазона длин волн с исходным уровнем поля, существенно меньшим критического пробойного уровня. Электрический пробой инициируется трубчатым элекромагнитным вибратором. Один конец вибратора имеет заостренные выступы, и на него надета кварцевая трубка. Через внутреннее отверстие вибратора воздух из атмосферы поступает в рабочую камеру с пониженным давлением. В результате в камере на выходе кварцевой трубки формируется затопленная сверхзвуковая струя воздуха. СВЧ-разряд горит в этой струе и привязан к кормовым выступам вибратора. Измерения пространственного распределения температуры и давления торможения потока в спутном следе разряда позволили оценить энерговклад в разрядную плазму и определить эффективную площадь энергетического взаимодействия разряда с возбуждаемым CBЧ-полем.

PACS: 52.80.Pi

Введение

СВЧ-разряд в квазиоптическом электромагнитном (ЭМ) пучке в неподвижном воздухе в определенном диапазоне давления p реализуется в стримерно-шнуровой форме [1]. При использовании для электрического пробоя воздуха инициатора такой разряд может быть зажжен в подкритическом и глубоко подкритическом поле. Здесь под критическим полем \mathbf{E}_{cr} понимается поле с таким минимальным уровнем, при котором еще обеспечивается самостоятельный, безэлектродный СВЧ-пробой воздуха [2].

В подкритическом поле, когда уровень исходного поля в ЭМ-пучке $E_0 < E_{cr}$, стримерные каналы СВЧ-диапазона выходят из области инициации и образуют пространственно-развитую структуру в объеме ЭМ-пучка. Отдельные плазменные шнуровые участки такого разряда, соизмеримые с половиной длины волны ЭМ-поля $\lambda/2$, характеризуются резонансными свойствами и обеспечивают высокую эффективность энергетического взаимодействия разряда с возбуждающим его СВЧ-полем. Это позволяет рассматривать возможности практического применения такого разряда [3].

В глубоко подкритическом поле, с уровнем $E_0 \ll E_{cr}$, стримерные каналы СВЧ-разряда теряют способность образовывать пространственно-развитую структуру. Они имеют длину, существенно меньшую $\lambda/2$, и "привязаны" к области инициации. В то же время в случае инициации пробоя, например линейным ЭМ-вибратором [4], этот вибратор с привязанными к его концам разрядными каналами может образовывать резонансную систему. Возникает вопрос: какова в этом случае эффективность вложения ЭМ-энергии.

Следует отметить, что если стримерный подкритический СВЧ-разряд, как правило, может быть осуществлен лишь в импульсном ЭМ-поле, то глубоко подкритический СВЧ-разряд сравнительно просто реализуется и в непрерывном режиме горения. В этом случае при высокой эффективности вложения ЭМ-энергии в плазму такого разряда пространство поиска путей его практического применения существенно расширится.

Одной из возможностей опытно определить указанную эффективность является зажигание инициированного вибратором глубоко подкритического СВЧ-разряда в потоке воздуха и измерение параметров потока в спутном следе этой системы. В настоящей работе описываются экспериментальные результаты конкретной реализации такой возможности и результаты их анализа.

Условия экспериментов

Принципиальная схема проведения экспериментов представлена на рис. 1. В опытах ЭМ-волна с выхода СВЧ-генератора мощностью $P_{gen} = 1.5 \, \text{kW}$ распростра-

Рис. 1. Схема экспериментов по исследованию свойств глубоко подкритического СВЧ-разряда в квазиоптическом ЭМ-пучке в сверхзвуковой струе воздуха.

няется по волноводу с размерами внутреннего сечения 45×90 mm. Волновод оканчивается антенным коническим рупором длиной 150 mm и площадью раскрыва 90×90 mm. В результате в рабочую камеру установки излучается линейно поляризованная ЭМ-волна с $\lambda = 12.3$ cm в виде квазиоптического СВЧ-пучка.

В пучок помещается медная трубка 1 наружным диаметром $d_{\text{out}} = 4 \,\text{mm}$ и внутренним — $d_{\text{in}} = 2 \,\text{mm}$. Ее ось, как показано на рис. 1, параллельна вектору электрической составляющей ЭМ-поля Е0 и отстоит от излучающего раскрыва рупора на расстояние 90 mm. Площадь поперечного сечения ЭМ-пучка в плоскости расположения трубки можно оценить как $1.24 \cdot 10^2$ cm². Таким образом, средняя плотность потока ЭМ-энергии исходного пучка в этой плоскости $\Pi \approx 12 \, \text{W/cm}^2$, что соответствует амплитуде поля $E_0 = 95 \,\text{V/cm}$. Один конец трубки плоский, другой имеет три треугольных заостренных выступа. Выступы глубтной 4 mm распределены равномерно по торцу трубки. Один из них расположен навстречу вектору Пойнтинга П ЭМ-пучка. На торец трубки с выступами плотно одета кварцевая трубка-насадка 2. Ее наружный диаметр 5.5 mm, общая длина 22 mm и длина участка, выступающего за заостренные концы вибратора, $L_{\text{out}} = 9 \,\text{mm}$.

Трубка расположена над металлическим экраном 3, перпендикулярным вектору П. Расстояние оси трубки от поверхности экрана $h = 30 \text{ mm} (\approx \lambda/4)$, т.е. она находится в пучности ЭМ-поля исходной величиной $2E_0$.

В электролитическом смысле трубка 1 является ЭМ-вибратором. Индуцированное поле на ее концах может существенно превышать возбуждающее ее поле и превышать поле, необходимое для пробоя воздуха. При длине трубки $2L \leq \lambda/2$ в ее центральной области индуцированные заряды равны нулю. Это позволяет закрепить трубку на укрепленной на экране 3 металлической стойке 4. Стойка имеет размер вдоль трубки, равный 10 mm, а поперек — 2 mm.

На плоско срезанный конец трубки-вибратора на длину 6 mm плотно одета полиэтиленовая трубка 5 внутренним диаметром 4 mm и толщиной стенки 1 mm. Она выходит из рабочей камеры установки, где в ее разрыв включен электрически управляемый клапан 6 с условным проходным диаметром, равным 10 mm. Полиэтиленовая трубка подключена к баллону 7 объемом $V_b = 5.2 \cdot 10^3$ сm³. Давление воздуха в баллоне может устанавливаться в диапазоне $p_b = 760-3$ Torr и контролироваться с точностью ± 1.5 Torr.

На рис. 1 с правой стороны экрана показан источник ультрафиолетового (УФ) излучения 8. Его назначение и схема будут разъяснены ниже.

Вибратор находится в рабочей камере объемом 0.5 m^3 . Давление воздуха в ней p_c может устанавливаться в диапазоне 760–3 Тогг и контролироваться с той же точностью, что и давление p_b .

При $p_c < p_b$ при открытии клапана 6 воздух из баллона начинает натекать в рабочую камеру, и на выходе кварцевой насадки 2 формируется струя воздуха.

Ее давление торможения p_{stag} и температура торможения T_{stag} могут быть измерены с помощью трубки Пито и термопары. При необходимости один из этих измерителей укрепляется на электрически управляемом устройстве передвижения, оно позволяет без разгерметизации камеры устанавливать рабочий элемент измерителя в заданную "точку" струи с показанными на рис. 1 координатами x, y, z. При этом ось x отсчитывается от кормовой плоскости кварцевой насадки 2.

Используемая в опытах металлическая трубка Пито имеет внутренный диаметр 2 mm, а наружный — 2.9 mm. В опытах входное сечение этой трубки направляется навстречу потоку. Другой конец трубки Пито подключен к "мостиковой" электромеханической измерительной схеме. Сигнал с нее пропорционален разности давления на входном конце трубки Пито и атмосферного давления и подается на вход осциллографа. Экспериментально определенная чувствительность схемы измерения p_{stag} — сверхзвукового потока воздуха — $S_p = 55.6$ torr/div. Она позволяет фиксировать как неизменное во времени давление, так и его перепады с миллисекундными фронтами.

Для измерения T_{stag} используется датчик на основе хромель-алюмелевой термопары. Для предотвращения СВЧ-наводки отходящие от "горячего" спая термопары провода помещены в металлическую трубку-экран наружным диаметром 4 mm. Спай выступает за торец экрана на 1 mm. При измерениях торец трубки располагается навстречу струе воздуха. "Холодным спаем" термопары является входная схема осциллографа. Средняя чувствительность используемого датчика в стабильном временном режиме измерения $S_T = 24.5$ K/mV при температуре горячего спая до 1100°С. Особенность измерений данным датчиком температуры T_{stag} с ее "резкими" перепадами будет описана ниже.

Резонансные свойства трубчатого ЭМ-вибратора

Резонансная длина $2L_{res}$ ЭМ-вибратора существенно зависит от его диаметра d_{out} [4]. В настоящей работе первоначально была экспериментально определена длина $2L_{res}$ используемого в основных исследованиях трубчатого вибратора с одетой на его конец кварцевой насадкой.

В данных экспериментах вибратор не крепился к экрану жестко на металлической стойке, а помещался над ним на высоте h на пенопластовой подставке. Эксперименты проводились в неподвижном воздухе. В них определялось максимальное его давление $p_{\rm br}$, при котором вибратор инициировал электрический пробой воздуха. Опыты начинались с максимальной длины вибратора 2L = 53 mm. Затем его длина постепенно уменьшалась путем обрезания со стороны плоского торца. В опытах наличие пробоя надежно фиксировалось визуально по

Рис. 2. Резонансные свойства трубчатого линейного ЭМ-вибратора с кварцевой насадкой.

развивающемуся СВЧ-разряду в областях, прилегающих к концам вибратора.

Основные опыты предполагалось проводить при длительности СВЧ-излучения $\tau_{MW} \approx 0.2$ s. Однако начальные эксперименты показали, что при такой τ_{MW} в последовательных СВЧ-импульсах при неизменных условиях пробой воздуха мог происходить, а мог и не происходить. Эта нестабильность, особенно при давлениях воздуха *p*, лишь незначительно меньших *p*_{br}, объясняется малым объемом области с индуцированным полем $E > E_{\rm cr}$ и отсутствием в ней в течение τ_{MW} свободных электронов, необходимых для начала процесса развития пробойной лавины.

Для ликвидации этой нестабильности в схему, как показано на рис. 1, был включен источник УФ-излучения 8. Это излучение генерируется искрой, горящей между внутренней жилой высоковольтного (ВВ) кабеля и поверхностью экрана 3. Соответствующий ВВимпульс подается на кабель одновременно с включением ВВ-питания СВЧ-генератора. Опыты показали, что облучение УФ-излучением конца трубки 1 с выступами стабилизирует процесс СВЧ-пробоя. При этом он развивается именно у этого конца вибратора внутри кварцевой насадки.

Результаты экспериментов по определению 2L_{res} в виде точек и аппроксимирующей кривой приведены на рис. 2.

Из рис. 2 следует, что $2L_{\rm res} \approx 48$ mm. Она на 13.5 mm меньше, чем $\lambda/2 = 61.5$ mm. Вибратор в таком исполнении может обеспечить пробой воздуха до $p_{\rm br} \approx 280$ Torr. Его добротность $Q \approx 5.5$. В основных экспериментах используется вибратор с 2L = 47 mm.

Параметры исходной затопленной струи воздуха

В опытах предполагается исследовать СВЧ-разряд в сверхзвуковой (СЗ) струе воздуха. Обозначим параметры, характеризующие воздух в баллоне 7 (рис. 1), где скорость воздуха $v_0 = 0$, индексом "0". В опытах в баллоне в исходном состоянии устанавливается $p_b = p_0 \approx 750$ Torr при температуре $T_0 \approx 300$ K.

Из теории [5] следует, что при $p_c \leq 0.5 p_0$ на участке тракта истечения, имеющего минимальную площадь сечения, поток будет характеризоваться числом Маха M = 1. Ниже по потоку этого критического сечения M < 1, а выше — M > 1. В описанном тракте сечение с минимальной площадью находится во внутреннем канале ЭМ-вибратора *1*. Следовательно, при $p_c \leq 0.5p_0$ на участке от баллона до этого канала течение будет дозвуковым (ДЗ), а в выходном канале кварцевой труб-ки 2 — СЗ.

Знание отношения площади сечения любого участка тракта к площади критического сечения позволяет рассчитать параметры потока в рассматриваемом сечении. Так, при указанном соотношении давлений p_c и p_0 в выходном канале кварцевой насадки 2 при отношении $(d_{out}/d_{in})^2 = 4$, число $M_{out} =$ = 2.94, статическое давление воздуха $p_{out} = 24$ Torr, его статическая температура $T_{out} = 110$ K, концентрация молекул $n_{out} = 2.3 \cdot 10^{18}$ сm⁻³, и скорость потока $v_{out} = 600$ m/s. Этим параметрам соответствует расход воздуха m = 0.7 g/s.

Описанные ниже эксперименты по исследованию воздушной "затопленной" струи выполнялись $p_c \approx p_{out}$.

Измерение падения давления Δp_b в баллоне 7 за фиксированное время τ_v открытия клапана 6 позволяет экспериментально оценить величину *m* и сравнить ее с полученной оценкой. В эксперименте за $\tau_v \approx 0.7$ s величина Δp_b в различных включениях схемы стабильно находится в диапазоне 51–54 Тогг. При известном объеме V_b эти значения с точностью до 10% дают величину *m*, совпадающую с приведенной выше ее теоретической оценкой. Основные эксперименты проводились с этим временем τ_v . Указанная величина Δp_b составляет примерно 14% от исходного значения p_0 . Следовательно, можно считать, что приведенные выше выходные параметры струи за время τ_v изменяются не более чем на эту величину.

Теория [6] дает и связь с числом M потока отношений p_{stag}/p и T_{stag}/T , где p и T — его статические параметры. Соответствующие зависимости показаны на рис. 3.

Для анализируемого в этом разделе адиабатического течения температура $T_{\text{stag}} = T_0$ и основная информация о струе содержится в осциллограммах для p_{stag} . На рис. 4 помещены осциллограммы с измерителя p_{stag} при $p_c = 21$ Torr (*a*) и при $p_c = 27$ Torr (*b*) в "ближней" зоне струи. На этих осциллограммах, как и на всех помещенных далее в тексте, временной масштаб

Рис. 3. Зависимости отношений p_{stag} и T_{stag} соответственно к статическому давлению и статической температуре воздуха в потоке от его числа Маха M.

$$p_{\text{stag}} = p_c + U_p S_p. \tag{1}$$

На осциллограммах рост сигнала начинается с момента открытия клапана 6. Сигнал возрастает до U_p за время ~ 0.06 s и остается примерно постоянным в течение 0.6 s. Их сумма дает фактическое время истечения $\tau_v = 0.66$ s. Заключительное падение уровня сигнала на осциллограммах отслеживает вытекание "остаточного" воздуха с $p > p_c$ из тракта формирования струи.

На рис. 4 при $p_c = 21$ Torr амплитуда $U_p \approx 4.6$ div, а при $p_c = 27$ Torr — $U_p \approx 4.5$ div. Оба эти значения по (1) дают $p_{\text{stag}} = 280$ Torr, что совпадает с величиной, следующей из отношения $p_{\text{stag}}/p_{\text{out}} = 11.7$, полученного по соответствующему графику на рис. 3 при $M_{\text{out}} = 2.94$.

На рис. 5 помещена построенная по сооветствующим осциллограммам зависимость $p_{\text{stag}}(p_c)$ на оси струи в ее ближней зоне. Из нее следует, что с ростом p_c давление p_{stag} в данном сечении струи растет. Этот результат предсказуем. При $p_c > p_{\text{out}}$ внешнее давление все в большей степени "поджимает" струю, ее диаметр уменьшается, число Маха падает, и давление p_{stag} растет.

На рис. 6 помещена экспериментальная зависимость $p_{\text{stag}}(x)$ вдоль оси струи при $p_c = 27$ Torr, а на рис. 7 при этом же значении p_c дана зависимость $p_{\text{stag}}(y)$

Рис. 4. Измеренное трубкой Пито давление p_{stag} затопленной воздушной струи при x = 5 mm и y = z = 0.

Рис. 5. Зависимость p_{stag} от p_c воздушной струи при x = 5 mm и y = z = 0.

Рис. 6. Зависимость $p_{\text{stag}}(x)$ воздушной струи при y = z = 0.

Рис. 7. Значения $p_{\text{stag}}(y)$ воздушной струи при z = 0 и x = 20 mm.

по диаметру поперечного сечения струи при x = 20 mm. На рис. 7 горизонтальной линией отмечен уровень p_c .

Глубоко подкритический СВЧ-разряд в СЗ-струе воздуха

Как отмечалось, вид СВЧ-разряда в неподвижном воздухе при комнатной температуре T_0 различен в разных областях $E_0 - p$ [1]. Фактически он определяется не значением p, а концентрацией молекул. В анализируемой ситуации на CЗ-участке тракта истечения концентрациии n_{out} при T_0 соответствует эквивалентное давление $p_{eq} = 65$ Torr. Для него $E_{cr} = 2.7$ kV/cm [2], и пробой воздуха должен быть реализован при подкритичности поля $(E_{cr}/2E_0) = 14$. По [1] опытным значениям p_{eq} и $2E_0$ соответствует область глубоко подкритических стримерных СВЧ-разрядов.

На рис. 8 помещены фотографии СВЧ-разряда, зажженного по рассматриваемой схеме при нескольких значениях p_c . Их время экспозиции $\tau_{exp} > \tau_{MW}$. На рис. 8 приведен вид кормового конца ЭМ-вибратора с кварцевой трубкой; с правой стороны по его оси находится измеритель T_{stag} . Его торец имеет координату x = 20 mm, что может служить масштабом изображений. На фотографиях видно, что разряд частично горит внутри кварцевой трубки. Это приводит как к повышению значения p в ней [7], так и может вызывать перестройку

 $p_c = 60$ Torr

 $p_c = 135$ Torr

Рис. 8. Внешний вид инициированного ЭМ-вибратором глубоко подкритического СВЧ-разряда в СЗ-струе воздуха.

Рис. 9. Осциллограммы с измерителя p_{stag} при горении СВЧ-разряда в СЗ-струе воздуха при $p_c = 21$ Torr, y = z = 0 и x = 5 (*a*) и 10 mm (*b*).

течения в поперечном направлении, последнее демонстрирует рис. 8. В опытах при $p_c \gtrsim 50$ Torr разрядная область теряет осевую симметрию.

На рис. 9 помещены характерные осциллограммы для p_{stag} при горении разряда в струе.

В опытах СВЧ-генерация начинается через 0.1 s после подачи сигнала на открытие клапана 6 и длится примерно 0.2 s. На осциллограммах видно, что, как и следует, через 0.1 s после начала формирования исходного потока картина течения меняется. Через 0.04-0.08 s оно вновь становится стационарным до окончания τ_{MW} , но уже на новом уровне. Отсчитываемая от начального горизонтального участка сигнала его стационарная величина при горении разряда $U_{p\,dis}$ и определяет по формуле (1) величину p_{stag} в это время.

На рис. 10 помещены зависимости $p_{\text{stag}}(x)$ по оси струи во время горения разряда при $p_c = 21$ и 36 Torr. Они иллюстрируют факт того, что при малых p_c значения p_{stag} вдоль оси струи флюктуируют. По мере роста p_c амплитуда флюктуаций уменьшается, и они перестают фиксироваться при $p_c \gtrsim 36$ Torr. Учитывая этот факт и то, что при $p_c \gtrsim 50$ Torr разряд начинает влиять и на осевую симметрию струи, основные опыты проводились при $p_c = 36$ Torr.

На рис. 11 при $p_c = 36$ Тогт и x = 20 mm приведены две типичные осциллограммы с измерителя T_{stag} при горении в C3-струе разряда. На осциллограммах вертикальный масштаб $S_U = 2 \text{ mV/div}$. На них сигнал начинает расти с момента зажигания разряда и падать — с момента его погасания, что дает время горения разряда $\tau_{\text{dis}} = 0.16$ s. Оно несколько меньше промежутка времени между подачей сигналов на включение и выключение СВЧ-генератора τ_{MW} .

Рис. 10. Зависимость $p_{\text{stag}}(x)$ при горении в C3-струе СВЧ-разряда при y = z = 0 (сплошная кривая — $p_c = 21$ Torr, штриховая — 36 Torr).

Рис. 11. Типичные осциллограммы с измерителя *T*_{stag} для возбужденной СВЧ-разрядом СЗ-струи.

Из рис. 11 следует, что измеритель T_{stag} инерционен. Если вслед за [8] положить, что при "ступенчатом" росте T_{stag} сигнал с датчика во времени *t* изменяется по закону $U = U_0[1 - \exp(-t/\tau_T)]$, то из осциллограмм следует, что постоянная времени $\tau_T = 0.21$ s. За время $t = \tau_{\text{dis}}$ сигнал возрастает до значения U_m . Это значение позволяет рассчитать U_0 : $U_0 = 1.8U_m$. Следовательно, "установившаяся" температура

$$T_{\text{stag}} = T_0 + 1.8 U_m S_T \equiv T_0 + \Delta T_{\text{dis}}.$$
 (2)

Температура $\Delta T_{\rm dis}$ и характеризует энергию, приобретенную газом в СВЧ-разряде [7].

На рис. 11 при y = z = 0 амплитуда $U_m = 6.8 \text{ mV}$ и по (2) $\Delta T_{\text{dis}} = 300^{\circ}$ К. При z = 0 и y = -3 mm значение $U_m = 13 \text{ mV}$ и $\Delta T_{\text{dis}} = 570 \text{ K}.$

В табл. 1 и 2 с шагом 1 mm помещены полученные при $p_c = 36$ Torr в плоскости x = 20 mm соответственно значения $U_{p \text{ dis}}$ и U_m .

Таблица 1. Значения сигналов с выхода измерителя давления торможения в спутном следе возбужденной СВЧ-разрядом СЗ-струи $(U_{p \text{ dis}}, \text{ div})$

	<i>z</i> , mm									
y, mm	-5	-4	-3	-2	-1	0	1	2	3	4
4	0	0.2	0.5	0.8	1.0	0.1	0	0	0	0
3	0	0.1	0.7	1.6	1.0	1.4	0.6	0.1	0.2	0
2	0	0.7	1.0	2.4	2.8	0.4	1.1	0.1	0.1	0.2
1	1.2	3.0	0.8	3.2	1.2	2.5	1.4	0.2	0.6	0.3
0	1.2	0.4	3.2	1.2	2.4	1.15	0.2	0.8	0.2	0.4
-1	0.1	0.4	2.2	2.0	1.6	1.8	1.4	0.8	1.0	0.4
-2	0.6	0.4	0.3	0.6	1.0	0.2	0.8	0.2	0.6	0.2
-3	0.1	0.6	0.2	0.2	0.2	0.5	0.4		0.4	0
-4	0	0.2	0.2	0.2	0	0	0	0	0	0

Таблица 2. Значения сигналов с выхода измерителя температуры торможения в спутном следе возбужденной СВЧ-разрядом C3-струи (U_m, mV)

	z, mm										
y, mm	-5	-4	-3	-2	-1	0	1	2	3	4	5
4	0	0	1.2		0.8	2	3.6	1	0	0	0
3	0	0	0.8	0.8	2.8	2.8	1.9	1.4	0	0	0
2	0	1.6	3.2	0.8	1.8	4.4	2.6	1.6	0	0	0
1	2	2.8	5.2	0.8	9.4	4.4	5	3.6	1.2	0	0
0	2.6	4	6.8	10.4	12	6.8	3.4	3.6	1	0.6	0.8
-1	3.2	5.2	9	9.6	4	13	6.8	8.4	2	1	0
-2	0	6	10	16	6	15	9.8	6.8	5.6	1.6	0
-3	0	7.2	10.4	14	7.6	13	9.8	6.8	4	0	0
-4	0	6.0	12	12	7.6	10.6	7.6		1	0	0

Мощность взаимодействия СВЧ-разряда в СЗ-струе воздуха с возбуждающим разряд ЭМ-полем

Данные табл. 1 и 2 позволяют оценить мощность взаимодействия СВЧ-разряда с возбуждающим его ЭМ-полем.

Для примера рассмотрим элементарную струйку потока, которая в плоскости x = 20 mm имеет координаты y = z = 0 и площадь $\Delta S = 1 \times 1$ mm. Для нее по табл. 1 значение $U_{p \text{ dis}} = 1.15$ div, и по табл. 2 — $U_m = 6.8$ mV, т. е. по (1) — $p_{\text{stag}} = 100$ Torr, а по (2) — $\Delta T_{\text{dis}} = 300$ K.

Будем присваивать параметрам, характеризующим прошедший через разрядную область поток, индекс "dis". Тогда число молекул воздуха, прошедшее через рассматриваемую площадку в единицу времени, $\Delta N = v_{\rm dis} n_{\rm dis} \Delta S$ (s⁻¹), где $v_{\rm dis}$ и $n_{\rm dis}$ — соответственно скорость потока и концентрация молекул в этой области. Каждая из этих молекул в разряде приобрела дополнительную энергию $\Delta Q_{\rm dis} = (7/2)k\Delta T_{\rm dis}$ (J) [7], где k — постоянная Больцмана. Следовательно, темп вложения энергии в эту струйку (W):

$$\Delta P_{\rm dis} = (7/2)k\Delta T_{\rm dis} v_{\rm dis} n_{\rm dis} \Delta S. \tag{3}$$

Будем считать, что при данном значении x статическое давление воздуха в струе $p_{\rm dis} = p_c = 36$ Torr, т. е. отношение $p_{\rm stag}/p_c = 2.8$. По соответствующему графику на рис. 3 ему соответствует $M_{\rm dis} = 1.3$. При этом числе Маха по следующему графику на рис. 3 отношение $T_{\rm stag}/T_{\rm dis} = 1.3$, или статическая температура $T_{\rm dis} = (300 \text{ K} + \Delta T_{\rm dis})/1.3 = 460 \text{ K}$. Этой $T_{\rm dis}$ соответствует скорость звука $v_{s \, \rm dis} = 420$ m/s и с учетом определенного $M_{\rm dis}$ направленная скорость молекул достигает $v_{\rm dis} = 550$ m/s. Следовательно, пройдя по разрядной области, воздух этой струйки нагрелся на 350 K и уменьшил скорость на 50 m/s. И наконец, по формуле

$$n_{\rm dis} = p_c / (kT_{\rm dis}), \tag{4}$$

где p_c имеет размерность N/m², получим $n_{\rm dis} \approx \approx 7 \cdot 10^{17} \, {\rm cm}^{-3}$. Оцененные величины по (3) дают $\Delta P_{\rm dis} = 5.6 \, {\rm W}$.

Для сравнения выполним аналогичный расчет для струйки с координатами z = 0 и y = -3. Площадь ее поперечного сечения по-прежнему составляет $\Delta S = 1 \text{ mm}^2$. Для нее по табл. 1 величина $U_{p \text{ dis}} = 0.5 \text{ div}$, что по (1) дает $p_{\text{stag}} = 64$ Torr, и по табл. 2 амплитуда $U_m = 13 \text{ mV}$, что по (2) дает $\Delta T_{\text{dis}} = 570 \text{ K}$. Для отношения $p_{\text{stag}}/p_c = 1.8$ по графику на рис. 3 получим $M_{\text{dis}} = 0.9$. Для него по рис. 3 отношение $T_{\text{stag}}/T_{\text{dis}} = 1.15$ и, следовательно, $T_{\text{dis}} = 760 \text{ K}$, чему соответствует $v_s \text{ dis} = 540$ и $v_{\text{dis}} = 500 \text{ m/s}$. Следовательно, пройдя по разрядной области, воздух этой струйки нагрелся на 650 K и уменьшил свою скорость на 100 m/s. Для этой струйки $n_{\text{dis}} = 4.5 \cdot 10^{17} \text{ cm}^{-3}$ и, подставив полученные величины в (3), получим $\Delta P_{\text{dis}} = 6.2 \text{ W}$. Приведенные оценки позволяют оценить достоверность экспериментальных данных. В них скорости рассматриваемых струек $v_{\rm dis}$ отличаются всего на 10%. Логика подсказывает, что в реальной струе они должны быть равны. В свою очередь, $v_{\rm dis} < v_{\rm out}$, что, как и следует из [7], обусловлено выделением энергии на выходном участке кварцевой трубки.

Аналогичный расчет можно выполнить и для других координат рассматриваемого сечения. Суммирование полученных значений $\Delta P_{\rm dis}$ дает полную мощность $P_{\rm dis} \approx 500$ W.

Величина $P_{\rm dis}$ позволяет определить эффективную площадь $S_{\rm eff}$ взаимодействия CBЧ-разряда с возбуждающим разряд ЭМ-полем: $S_{\rm eff} = P_{\rm dis}/\Pi(2E_0) \approx 10 \,{\rm cm}^2$. Она существенно превышает площадь продольного сечения плазменной области, которую по рис. 8 можно оценить в 1 cm². По этому же рисунку объем плазменной области $V_{\rm dis} \approx 0.4 \,{\rm cm}^3$ и энергия, выделяемая в единице объема этой области за единицу времени, т.е. объемная мощность взаимодействия $P_{\rm dis}/V_{\rm dis} \approx 1.2 \,{\rm kW/cm}^3$.

Заключение

Таким образом, реализован инициированный линейным ЭМ-вибратором глубоко подкритический СВЧ-разряд в исходной СЗ-струе воздуха в поле линейно поляризованного квазиоптического ЭМ-пучка. Измерения распределений давления и температуры торможения в спутном следе разрядной области позволили оценить эффективную площадь взаимодействия разрядной плазмы с возбуждающим разряд ЭМ-полем. Эта площадь существенно превышает площадь сечения разрядной области.

В условиях экспериментов в разряд складывается около 30% мощности ЭМ-пучка. Этот показатель может быть существенно повышен. Одно из направлений его повышения заключается в согласовании размеров поперечного сечения пучка в плоскости расположения вибратора с эффективной площадью электродинамической системы "вибратор-плазменная область". Второе — это уменьшение вибратора до величины, лишь обеспечивающей пробой воздуха. При этом длина плазменной области и, следовательно ее объем, существенно увеличатся.

Оценка вложенной в разряд энергии может быть несколько заниженной. Требует дополнительного исследования вопрос, вся ли энергия, приобретенная молекулами воздуха в разряде, релаксировала в тепло в процессе измерений.

Выполненные исследования позволяют рассматривать варианты применения данной схемы в практических устройствах в качестве СВЧ-плазмотрона.

Список литературы

- [1] Александров К.В., Грачев Л.П., Есаков И.И., Федоров В.В., Ходатаев К.В. // ЖТФ. 2006. Т. 76. Вып. 11. С. 52–60.
- [2] Мак Дональд А. Сверхвысокочастотный пробой в газах. М.: Мир, 1969. 205 с.
- [3] Esakov I.I., Grachev L.P., Khodataev K.V., Van Wie D.M. // Proc. 32nd AIAA Plasmadynamics and Lasers Conf. And 4th Weakly Ionized Gases Workshop. Anaheim, CA, 2001. AIAA-2001-2939.
- [4] Грачев Л.П., Есаков И.И., Мишин Г.И., Ходатаев К.В. // ЖТФ. 1995. Т. 65. Вып. 7. С. 60–67.
- [5] Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1970. 904 с.
- [6] Горлин С.М. Экспериментальная аэромеханика. М.: Высш. шк., 1970. 423 с.
- [7] Бартльме Ф. Газодинамика горения. М.: Энергоиздат, 1981.
 275 с.
- [8] Чистяков С.Ф., Радун Д.В. Теплофизические измерения и приборы. М.: Высш. шк., 1972. 114 с.