Влияние примесей бора, азота, кислорода на электронную структуру и деформационное поведение Ti₃SiC₂

© Н.И. Медведева

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: medvedeva@ihim.uran.ru

(Поступила в Редакцию 17 июля 2012 г.)

В рамках неэмпирического метода функционала электронной плотности изучено влияние примесей азота, кислорода и бора на параметры решетки, локальные искажения, стабильность и электронную структуру тройного силикокарбида Ti₃SiC₂. Проведено моделирование аксиального растяжения и установлено влияние примесей на деформационное поведение Ti₃SiC₂. Показано, что азот может способствовать упрочнению Ti₃SiC₂, а бор и кислород должны приводить к ламинатному расслоению.

Работа выполнена при поддержке РФФИ (грант № 10-03-96015).

1. Введение

Силикокарбид Ti₃SiC₂ характеризуется тугоплавкостью, стойкостью к агрессивным средам, пластичностью при высоких температурах, что позволяет отнести эту слистую MAX-фазу к новым перспективным композиционным материалам [1–3]. Это соединение демонстрирует свойства металлов (электрическая проводимость и теплопроводность у Ti₃SiC₂ значительно выше, чем у металлического Ti) и керамики (хрупкопластичный переход в Ti₃SiC₂ происходит при высокой температуре 1100°C) [1–11].

Необычные механические свойства Ti_3SiC_2 обусловлены сложным механизмом деформации, где скольжение и ламинатный разрыв являются доминирующими. Микроскопический механизм хрупкого разрушения в Ti_3SiC_2 исследовался в рамках неэмпирических методов [12–15]. Как известно, Ti_3SiC_2 имеет гексагональную слоистую структуру из чередующихся плоских сеток атомов кремния и карбидных блоков [TiC]. Сравнение энергий разрыва и сдвига для различных базисных плоскостей показало, что расслаивание и планарные сдвиги в карбидных блоках являются маловероятными, а образование трещин и скольжение должны происходить между слоями атомов Ti и Si.

Установлено, что в отличие от металлов примеси легких атомов не оказывают большого влияния на движение дислокаций в Ti_3SiC_2 . Такой эффект возможен в случае, когда примеси находятся в структурном блоке [TiC], а не являются примесями внедрения между гексагональными слоями атомов Ti и Si. Несмотря на большой интерес, механизм влияния легких примесей на кристаллическую структуру и электронное строение Ti_3SiC_2 недостаточно исследован. Твердые растворы Ti3SiCN и Ti3SiCO, где атомы углерода частично замещаются азотом или кислородом, моделировались в работе [16], однако предпочтительные позиции легких примесей, а также их влияние на параметры решетки и деформационное поведение не были установлены. В настоящей работе в рамках неэмпирического метода функционала электронной плотности изучено влияние примесей азота, бора и кислорода на параметры решетки, локальные искажения, стабильность и электронную структуру силикокарбида Ti₃SiC₂. Установлены предпочтительные позиции примесей. Исследовано влияние примесей на деформационное поведение Ti₃SiC₂ посредством моделирования аксиального растяжения и анализа изменений длин связей в зависимости от величины деформации.

2. Модели и метод расчета

Как известно, Ti₃SiC₂ имеет гексагональную слоистую структуру (пространственная группа P63/mmc, Z = 2) из чередующихся плоских сеток атомов кремния и блоков карбида титана, содержащих два слоя октаэдров CTi₆ [1–3]. Атомы титана занимают две структурнонеэквивалентных позиции Ti1 и Ti2. Атомы Ti2 связаны с атомами кремния и углерода, а атомы Ti1 локализованы в карбидных слоях, и структура Ti₃SiC₂ рассматривается как последовательность гексагональных слоев -Si-Ti2-C-Ti1-C-Ti2-Si-.

Расчеты Ti₃SiC₂ выполнены методом проекционных присоединенных волн (projector augmented-wave — PAW) с использованием пакета Vienna *Ab initio* Simulation Package (VASP) [17,18] и обобщенного градиентного приближения для обменно-корреляционного потенциала [19]. Интегрирование в зоне Бриллюэна проводилось по $10 \times 10 \times 6 k$ -точкам, кинетическая энергия обрезания выбрана равной 350 eV. Для расчета атомных и структурных релаксаций использован градиентный метод с условием сходимости по силам 0.01 eV/Å.

3. Результаты и обсуждение

Оптимизированные параметры решетки и координаты атомов в Ti_3SiC_2 a = 3.076 AA, c/a = 5.7636,

Рис. 1. Полные и парциальные (пунктирная линия — плотность состояний углерода, бора, азота или кислорода) плотности состояний для Ti₃Si(C, X)₂. Уровень Ферми соответствует нулевой энергии.

 $z_{\rm Ti} = 0.135$ и $z_{\rm C} = 0.067$ находятся в хорошем согласии с недавно полученными экспериментальными данными (a = 3.0575 Å и c/a = 5.7640, $z_{Ti} = 0.1355$ и $z_{\rm C} = 0.0722$ [20]). Расстояния между атомами титана и кремния (2.70 Å) существенно больше, чем расстояния в карбидном блоке (расстояния Ti1-C и Ti2-C равны 2.19 и 2.10 А соответственно, см. таблицу), и легкие примеси могли бы внедряться в поры между гексагональными Ті- и Si-слоями. Для того чтобы определить предпочтительную позицию для примесей, были рассчитаны полные энергии фаз Ti₃SiC_{1.5}X_{0.5} и Ti₃SiC₂X_{0.5} (X = B, N u O), где примесный атом замещает углерод и межузельную позицию между слоями атомов Ті и Si соответственно. Сравнение этих двух позиций проведено с учетом разности полных энергий углерода и примеси. Расчет полных энергий углерода и бора выполнен для кристаллических структур графита и α-В₁₂. Полная энергия О и N получена из расчетов молекул О₂ и N₂, которые моделировались двумя атомами, расположенными в кубе с параметром решетки 10 А. Полученные оптимизированные значения межатомных расстояний (1.224 и 1.114 Å для O₂ и N₂ соответственно)

достаточно хорошо согласуются с экспериментальными значениями длин связей (1.207 и 1.098 Å) в этих молекулах. Расчеты на основе сопоставления полных энергий показали, что все примеси замещают углерод, а внедрение в поры между гексагональными слоями Ті и Si менее выгодно: на 0.12, 0.08 и 0.29 eV для N, O и B соответственно.

Установлено влияние примесей, замещающих углерод, на параметры решетки, локальные искажения и стабильность Ti₃SiC₂. Примесь бора увеличивает, а азот уменьшает оба параметра гексагональной решетки; кислород вызывает уменьшение параметра *a* и увеличение параметра *c* (см. таблицу). Однако в случае примеси бора, несмотря на значительное увеличение параметров *a* и *c*, отношение *c/a* не меняется, а для Ti₃SiC_{1.5}N_{0.5} и Ti₃SiC_{1.5}O_{0.5} *c/a* возрастает, что свидетельствует об увеличении анизотропии химической связи. Расстояния Ti1–X и Ti2–X увеличиваются для X = B, O, а азот укорачивает их, при этом Ti₂–Si-расстояние не меняется для Ti₃SiC_{1.5}B_{0.5} и уменьшается при наличии азота и кислорода. Следует отметить, что параметр *a* гексагональной решетки убывает в ряду $B \rightarrow C \rightarrow N \rightarrow O$,

Параметры решетки, межатомные расстояния, плотность на уровне Ферми и изменение энтальпии образования $Ti_3Si(C, X)_2$

Параметр	Ti ₃ SiC ₂	$Ti_3SiC_{1.5}B_{0.5}$	$Ti_3SiC_{1.5}N_{0.5}$	$Ti_3SiC_{1.5}O_{0.5}$
a, Å	3.076	3.097	3.057	3.046
<i>c</i> , Å	17.729	17.851	17.707	17.920
c/a	5.763	5.764	5.793	5.883
Ti2–Si, Å	2.70	2.70 (2.70)	2.70 (2.67)	2.70 (2.63)
Ti2- <i>S</i> , Å	2.10	2.16	2.09	2.17
Ti $1-X$, Å	2.19	2.26	2.17	2.23
$N(E_{\rm F})$,	2.76	2.70	2.26	2.36
state/eV				
ΔH , eV/f.u.	0	+0.56	+0.01	+1.34

что отвечает изменению атомного радиуса примеси X (атомные радиусы равны 0.88, 0.77, 0.70 и 0.66 Å для B, C, N и O соответственно [21]).

Рассчитанные плотности состояний (ПС) для Ti₃SiC₂, Ti₃SiC_{1.5}O_{0.5}, Ti₃SiC_{1.5}N_{0.5} и Ti₃SiC_{1.5}O_{0.5} (рис. 1) позволили установить изменения в электронной структуре при наличии примесей. Уровень Ферми $E_{\rm F}$ в Ti₃SiC₂ расположен вблизи псевдощели между связывающими и антисвязывающими состояниями и попадает на пик состояний титана, как это было показано в предыдущих расчетах электронной структуры Ti₃SiC₂ [16,22,23]. Плотность состояний на уровне Ферми $N(E_{\rm F})$ довольно высокая, что определяет металлический характер проводимости в Ti₃SiC₂. Вклад углерода в прифермиевской области незначителен, и величина $N(E_{\rm F})$ определяется состояниями титана.

Уменьшение числа валентных электронов, обусловленное примесью бора, приводит к сдвигу $E_{\rm F}$ в область связывающих состояний, но не меняет значения $N(E_{\rm F})$ из-за наличия связывающих 2*p*-состояний бора вблизи уровня Ферми. Наблюдается уменьшение интенсивности пиков около -10 и -2.5 eV, обусловленных вкладами C2*s*- и C2*p*-состояний.

Увеличение числа электронов, обусловленное примесью азота, сдвигает $E_{\rm F}$ в область высоких энергий, но $E_{\rm F}$ остается в псевдощели, отделяющей связывающие и антисвязывающие состояния. В низкоэнергетической области ПС появляется новый пик при -15 eV, обусловленный вкладом 2*s*-состояний азота, увеличивается ПС вблизи -5 eV за счет N2*p*-состояний. Плотность состояний на уровне Ферми $N(E_{\rm F})$ уменьшается за счет уменьшения вклада состояний титана, а вклад N2*p*-состояний в $N(E_{\rm F})$ близок к нулю.

Дальнейшее увеличение числа электронов при частичном замещении углерода кислородом также сдвигает уровень Ферми в область высоких энергий. Пик 2*s*состояний кислорода расположен ниже -20 eV, а O2pсостояния вносят вклад в полную ПС в области энергий от -8 до -5 eV, существенно увеличивая полную ПС в этом интервале. В интервале наибольших значений ПС (область выше -5 eV до $E_{\rm F}$) вклад кислорода отсутствует. Рассчитанное изменение энтальпии образования показывает, что азот почти не влияет на стабильность этого силикокарбида, а частичное замещение углерода бором или кислородом резко понижает стабильность, что обусловлено существенным увеличением длин связей Ti1-(O,B) и Ti2-(O,B), которые вносят основной вклад в когезию образования (см. таблицу).

В предыдущих работах [14,15,23] были исследованы микроскопические характеристики процесса разрушения для различных кристаллографических плоскостей и предсказаны критические напряжения и предпочтительные плоскости разрыва для Ti_3SiC_2 . Моделирование аксиального растяжения кристалла показало, что с ростом параметра решетки *с* расстояния Ti_2-C (рис. 2) и Ti1-C (рис. 3) меняются незначительно, в то время как Ti2-Si-расстояние резко увеличивается (рис. 4). Для удлинения более 15% изменение длины связи Ti2-Si почти полностью соответствует деформации, т.е. эта связь способна аккумулировать большое напряжение

Рис. 2. Зависимость межплоскостных расстояний Ti1-X от величины аксиального растяжения в $Ti_3Si(C,X)_2$.

Рис. 3. Зависимость межплоскостных расстояний Ti2-X от величины аксиального растяжения в $Ti_3Si(C,X)_2$.

Рис. 4. Изменение межплоскостных расстояний Ti2–Si в $Ti_3Si(C, X)_2$ в зависимости от величины аксиального растяжения. Сплошная линия соответствует ближайшей к примеси Ti2–Si-связи, пунктирная — удаленной от примеси Ti2–Si-связи.

при аксиальном растяжении, что объясняет механическую прочность Ti₃SiC₂.

При наличии примесей расстояния Ti2-(C, B, N, O) увеличиваются в меньшей степени (рис. 3), чем расстояния Ti1-(C, B, N, O) (рис. 2). При растяжении более 6% длина связей Ti2-(C, B, N) не меняется, а связь Ti1-(C, B, N) удлиняется. Примесь азота слабо влияет на изменение Ti1-X- и Ti2-X-расстояний, более существенные изменения обусловлены примесями бора и кислорода. Следует отметить резкое увеличение длины связи Ti2-O для больших деформаций.

Как и для чистой фазы, наибольшее удлинение в $Ti_3Si(C,X)_2$ наблюдается для Ti2-Si связей (рис. 4), которые почти полностью аккумулируют напряжения при растяжении Ti₃SiC₂. В отсутствие аксиального растяжения примеси азота и кислорода уменьшают расстояние между ближайшими к примеси атомами Ti2 и Si, а бор не оказывает влияния на Ti2-Si-расстояния (см. таблицу). Однако при растяжении наблюдается анизотропия в изменении длин Ti2-Si-связей, ближайших к примеси и удаленных от примеси. В присутствии примесей ближайшие Ti2-Si связи меняются меньше, чем в Ti₃SiC₂, т.е. примеси способствуют упрочнению ближайших Ti2-Si-связей по отношению к растяжению. Однако, как видно из рис. 4, расстояния между атомами Ti2 и Si, удаленными от примесей бора и кислорода, возрастают быстрее, чем в ТізSiC2. Таким образом, выполненные расчеты показывают, что примесь азота может способствовать упрочнению Ti₃SiC₂, а примесь бора будет приводить к ламинатному расслоению изза существенного удлинения удаленных от бора Ti2-Siсвязей. Возрастание расстояний между атомами Ti2 и О при аксиальном растяжении Ti₃Si(C,O)₂ также может привести к образованию трещины.

4. Заключение

С использованием неэмпирического метода функционала электронной плотности исследовано влияние примесей азота, кислорода и бора на параметры решетки, локальные искажения, стабильность и электронную структуру Ті₃SiC₂. Показано, что все примеси замещают углерод в карбидном блоке и поэтому не влияют на движение дислокаций, которое происходит между гексагональными слоями титана и кремния. Установлено, что бор и кислород дестабилизируют Ti₃SiC₂, но возможно образование карбонитридных твердых растворов Ti₃SiC₂ – xN_x благодаря наличию ковалентных связей N-Ti-C. Проведено моделирование аксиального растяжения и установлено влияние примесей на деформационное поведение Ti₃SiC₂. Показано, что азот может способствовать упрочнению Ti₃SiC₂, а бор и кислород должны приводить к ламинатному расслоению.

Список литературы

- R. Pompuch, J. Lis, L. Stobievski, M. Tymkiewicz. J. Eur. Ceram. Soc. 5, 283 (1989).
- [2] M.W. Barsoum. Prog. Solid State Chem. 28, 201 (2000).
- [3] J.Y. Wang, Y.C. Zhou. Ann. Rev. Mater. Res. 39, 415 (2009).
- [4] M.W. Barsoum, T. El-Raghy. J. Amer. Ceram. Soc. 79, 1953 (1996).
- [5] T. El-Raghy, A. Zavaliangos, M.W. Barsoum, S. Kalidinidi. J. Am. Ceram. Soc. 80, 513 (1997).
- [6] M.W. Barsoum, T. El-Raghy, C.J. Rawn, W.D. Porter, H. Wang, A. Payzant, C.R. Hubbard. J. Phys. Chem. Solids 60, 429 (1999).
- [7] M.W. Barsoum, T. Zhen, S.R. Kalidindi, M. Radovic, A. Murugaiah. Nature Mater. 2, 107 (2003).
- [8] Z.F. Zhang, Z.M. Sun, H. Zhang, H. Hashimoto, Adv. Eng. Mater. 6, 980 (2004).
- [9] T. Zhen, M.W. Barsoum, S.R. Kalidindi, M. Radovic, Z.M. Sun, T. El-Raghy. Acta Mater. 53, 4963 (2005).
- [10] Z.M. Sun, Z.F. Zhang, H. Hashimoto, T. Abe. Mater. Trans. 43, 432 (2002).
- [11] Z.F. Zhang, Z.M. Sun, H. Hashimoto. Mater. Lett. 57, 1295 (2003).
- [12] C.M. Fang, R. Ahuja, O. Eriksson, S. Li, U. Jansson, O. Wilhelmsson, L. Hultman. Phys. Rev. B 74, 054 106 (2006).
- [13] H.Z. Zhang, S.Q. Wang. Acta Mater. 55, 4645 (2007).
- [14] N.I. Medvedeva, A.J. Freeman. Scripta Mater. 58, 671 (2008).
- [15] Н.И. Медведева, А.Н. Еняшин, А.Л. Ивановский. ЖСХ 52, 806 (2011).
- [16] N.I. Medvedeva, D.L. Novikov, A.L. Ivanovskij, M.V. Kuznetsov, A.J. Freeman. Phys. Rev. B 58, 16 042 (1998).
- [17] G. Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996).
- [18] G. Kresse, J. Hafner. J. Phys.: Cond. Matter 6, 8245 (1996).
- [19] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [20] E.H. Kisi, A.A. Crossley, S. Myhra, M.W. Barsoum. J. Phys. Chem. Solids 59, 1443 (1998).
- [21] C. Kittel. Introduction to solid state physics. 7th ed. Wiley, N.Y. (1996). P. 673.
- [22] Н.И. Медведева, А.Л. Ивановский. ЖНХ 43, 462 (1998).
- [23] J.Y. Wang, Y.C. Zhou. Phys. Rev. B 69, 144108 (2004).