01;03 Механизм конвективной неустойчивости бинарной смеси у вертикальной поверхности

© Л.Х. Ингель

Научно-производственное объединение "Тайфун", 249038 Обнинск, Калужская область, Россия e-mail: lingel@obninsk.com

(Поступило в Редакцию 8 октября 2007 г. В окончательной редакции 8 апреля 2008 г.)

Показано, что даже при сколь угодно сильной гидростатической устойчивости двухкомпонентной среды (например, соленой морской воды) состояние ее механического равновесия в поле силы тяжести может быть неустойчивым из-за различия краевых условий для двух субстанций (температуры и концентрации примеси) на вертикальных границах. В аналитическом виде найдены критерии неустойчивости длинноволновых возмущений у вертикальной поверхности и в вертикальном слое.

PACS: 44.25.+f, 47.27.Te, 47.55.Hd

Введение

Гидротермодинамика двухкомпонентных жидкостей (бинарных смесей), как хорошо известно, обладает существенной спецификой, которую часто связывают с различием значений коэффициентов переноса для двух субстанций (тепла и концентрации примеси, например, соли в случае морской воды) [1,2]. В последние годы была отмечена возможность существования ряда не замеченных ранее эффектов, не всегда связанных с различием коэффициентов обмена (см., например, [3–6]).

В настоящей работе обращается внимание на механизм конвективной неустойчивости гидростатически устойчивой бинарной смеси, существующий даже при одинаковых значениях упомянутых коэффициентов. Он связан с различием краевых условий для двух субстанций.

Физическая идея заключается в следующем. Пусть, например, при устойчивой температурной стратификации и неустойчивой стратификации концентрации примеси (для краткости будем говорить о соли) некоторый объем среды вблизи вертикальной поверхности немного сместился вверх. Если стратификация плотности среды в целом устойчива, он, казалось бы, должен приобрести при этом отрицательную плавучесть (имея температуру ниже температуры окружающей среды) и испытывать действие возвращающей силы. Но его плавучесть зависит также от процессов обмена с окружающей средой. Если температура вертикальной поверхности фиксирована более жестко, чем соленость (краевые условия для двух собстанций различаются), то отклонение температуры в рассматриваемом смещенном объеме среды, при прочих равных условиях, быстрее релаксирует, чем возмущение солености. Поскольку последнее возмущение в данном случае вносит положительный вклад в плавучесть рассматриваемого объема среды, а сохраняется лучше, чем отрицательное температурное возмущение, здесь видна принципиальная возможность положительной обратной связи. Такой механизм в некоторых отношениях аналогичен неустойчивости, обусловленной "двойной" (дифференциальной) диффузией [1,2], но вместо различия коффициентов обмена эффект связан с различием граничных условий.

1. Фоновое состояние и исходные уравнения

Согласно обычно используемому приближению, предполагаем, что плотность среды линейно зависит от возмущений температуры T и концентрации примеси (солености) s:

$$\rho = \rho_0 (1 - \alpha T + \beta s),$$

где ρ_0 — средняя (отсчетная) плотность среды; α — термический коэффициент расширения среды, β — коэффициент ее соленостного сжатия.

Линеаризованная система уравнений динамики, переноса тепла и примеси в приближении Буссинеска имеет вид [1,2]:

$$\frac{\partial \mathbf{v}}{\partial t} = -\frac{1}{\rho_0} \nabla p + \nu \nabla^2 \mathbf{v} + g \left(\alpha T - \beta s\right) \mathbf{e}_z, \quad \nabla \mathbf{v} = \mathbf{0},$$
$$\frac{\partial T}{\partial t} + \gamma_T \mathbf{v} \mathbf{e}_z = \kappa \nabla^2 T, \quad \frac{\partial s}{\partial t} + \gamma_s \mathbf{v} \mathbf{e}_z = \chi \nabla^2 s. \tag{1}$$

Здесь **v** — вектор возмущения поля скорости; *t* — время, *p* — возмущение давления, **e**_z — единичный вектор в направлении вертикальной оси *z*, *v* — кинематический коэффициент вязкости, κ — коэффициент температуропроводности, χ — коэффициент диффузии примеси, *g* — ускорение свободно падения; γ_T и γ_s — постоянные значения фоновых вертикальных градиентов температуры и концентрации примеси. Для определенности эти значения предполагаются положительными, так что стратификация температуры стабилизирует, а примеси — дестабилизирует среду. При этом соотношение γ_T и γ_s предполагается таким, что фоновое состояние в отсутствие краевых эффектов устойчиво—неустойчивая стратификация примеси с избытком компенсируется устойчивой температурной стратификацией [1,2].

Нейтральные кривые для симметричных (вертикально-однородных) возмущений в вертикальном слое

Рассмотрим жидкую среду в бесконечном вертикальном слое -L/2 < x < L/2 (x — горизонтальная координата), на границах которого предполагается выполнение условий непротекания и прилипания. Если ограничиться исследованием вертикально-однородных возмущений, зависящих только от одной горизонтальной координаты x, система уравнений сводится к виду

$$\frac{\partial w}{\partial t} = v \frac{\partial^2 w}{\partial x^2} + g(\alpha T - \beta s), \qquad (2)$$

$$\frac{\partial T}{\partial t} + \gamma_T w = \kappa \frac{\partial^2 T}{\partial x^2}, \quad \frac{\partial s}{\partial t} + \gamma_s w = \chi \frac{\partial^2 s}{\partial x^2}, \quad (3)$$

где *w* — вертикальная составляющая скорости (другие составляющие в данной задаче отсутствуют).

В качестве примера задачи с разными краевыми условиями для возмущений температуры и примеси рассмотрим ситуацию, когда для одной субстанции заданы краевые условия первого, для другой — второго рода:

$$T = 0, \quad \frac{\partial s}{\partial x} = 0 \tag{4}$$

при $x = \pm \frac{L}{2}$.

Будем исследовать устойчивось состояния покоя по отношению к монотонным вертикально-однородным возмущениям. Для вертикальной скорости ищется решение вида

$$w(x,t) = W(x) \exp(\omega t), \tag{5}$$

для других неизвестных — аналогичным образом. Исключив из исходной системы уравнений все неизвестные, кроме w, при $\omega = 0$ (имея в виду расчет порога неустойчивости) приходим к уравнению

$$\frac{d^4W}{dx^4} = -\frac{1}{\nu\kappa} \left(N_T^2 + \frac{\kappa}{\chi} N_s^2 \right) W, \tag{6}$$

где $N_T = (\alpha g \gamma_T)^{1/2}$, $N_s = (-\beta h \gamma_s)^{1/2}$ — "термическая" и "соленостная" частоты плавучести (Брента-Вяйсяля). Вводя безразмерную горизонтальную координату $X = \frac{x}{(L/2)}$, перепишем систему уравнений в виде

$$\frac{d^4W}{dX^4} = -RW,\tag{7}$$

$$\frac{d^2T}{dX^2} = (L^2 \gamma_T / 4\kappa) W, \quad \frac{d^2s}{dX^2} = (L^2 \gamma_s / 4\chi) W.$$
(8)

Здесь безразмерный параметр

$$R = \frac{L^4}{16\nu\kappa} \left(N_T^2 + \frac{\kappa}{\chi} N_s^2 \right) = \frac{\alpha g \gamma_T L^4}{16\nu\kappa} \left(1 - \frac{\kappa}{\chi} \frac{\beta \gamma_s}{\alpha \gamma_T} \right), \quad (9)$$

с точностью до знака, является некоторым аналогом и обобщением числа Рэлея (рассматриваемым стратификациям, устойчивым по известным критериям, соответствует R > 0); амплитуды T и s, там где это не может вызвать недоразумений, обозначены теми же буквами, что и сами возмущения.

Общее решение уравнений (7) имеет вид

$$W(X) = \sum_{j=1}^{4} C_j \exp(q_j X),$$
 (10)

где C_j — постоянные интегрирования, q_j — корни характеристического уравнения:

$$q_j = \pm B(1 \pm i), \quad B = \sqrt[4]{R/4}.$$
 (11)

Интегрирование уравнений (8) дает

$$T = \theta_0 + \theta_1 X + \sum_{j=1}^4 \frac{C_j}{q_j^2} \exp(q_j X),$$

$$s = S_0 + S_1 X + \sum_{j=1}^4 \frac{C_j}{q_j^2} \exp(q_j X),$$

где $\theta_{0,1}$, $S_{0,1}$ — постоянные интегрирования. С учетом краевых условий прилипания и (4) для постоянных интегрирования получим уравнения

$$\begin{split} \sum_{j=1}^{4} C_j \exp(\pm q_j) &= 0, \quad S_1 + \sum_{j=1}^{4} \frac{C_j}{q_j} \exp(\pm q_j) = 0, \\ \theta_0 + \theta_1 + \sum_{j=1}^{4} \frac{C_j}{q_j^2} \exp(q_j) &= 0, \\ \theta_0 - \theta_1 + \sum_{j=1}^{4} \frac{C_j}{q_j^2} \exp(-q_j) &= 0. \end{split}$$

Еще одно соотношение следует из того, что разность $\alpha T - \beta s$ в правой части (2) не должна содержать каких-либо слагаемых, помимо экспонент (в противном случае они бы проявились в стационарном решении для w). Следовательно, должно выполняться соотношение

$$\alpha \theta_1 - \beta S_1 = 0.$$

Таким образом, имеем однородную линейную систему из семи уравнений с семью неизвестными C_i , θ_0 , θ_1 , S_1 . Условие существования нетривиального решения, соответствующего границе устойчивости, — обращение в нуль определителя системы. Как показывают расчеты, это имеет место при следующем соотношении между основными безразмерными параметрами:

~

$$\frac{\kappa}{\chi} \frac{\beta \gamma_s}{\alpha \gamma_T} = \frac{F(B)}{B},$$

$$F(B) = \frac{\exp(4B) - 2\exp(2B)\cos(2B) + 1}{\exp(4B) + 2\exp(2B)\sin(2B) - 1}.$$
(12)

- (-)

Решение, вообще говоря, определяется тремя безразмерными параметрами. В качестве одного из них можно выбрать "температурное" число Рэлея:

$$\mathrm{Ra}_T = -\frac{\alpha g \gamma_T L^4}{16 \nu \kappa}.$$

Для других

$$au = rac{\kappa}{\chi}, \quad \eta = rac{\beta \gamma_s}{\alpha \gamma_T}$$

— отношение коэффициентов переноса для двух субстанций и, с точностью до знака, отношение их вкладов в стратификацию плотности. В найденное выше соотношение (12) величины τ и η входят лишь в виде произведения

$$\xi = \tau \eta = \frac{\kappa}{\chi} \frac{\beta \gamma_s}{\alpha \gamma_T} = \frac{\kappa}{\chi} \frac{\text{Ra}_s}{\text{Ra}_T}.$$
 (13)

Здесь

$$\mathrm{Ra}_{s}=-\frac{\beta g \gamma_{s} L^{4}}{16 \nu \kappa}$$

— аналог числа Рэлея для концентрации примеси.

На рис. 1 построена нейтральная кривая на плоскости $\frac{\kappa}{\chi} \operatorname{Ra}_s$, Ra_T (кривая *1*, над которой находится область неустойчивости). Для сравнения приведена биссектриса данного квадранта (кривая *2*), соответствующая нейтральной кривой при отсутствии рассматриваемых краевых эффектов [1]. Видно, что рассматриваемый механизм приводит к существенному расширению области неустойчивости.

При слабых стратификациях (малых значениях безразмерных параметров R и B) из (12) можно получить

Рис. 1. Нейтральная кривая (1) на плоскости $\left(\frac{\kappa}{\chi} \operatorname{Ra}_{s}, \operatorname{Ra}_{T}\right)$. Для сравнения приведены граница конвективной неустойчивости, обусловленной двойной диффузией (2) и граница устойчивости в приближении (16) (3). Области неустойчивости находятся над этими кривыми.

Рис. 2. Универсальная функция F(B).

асимптотику

$$\xi \equiv \frac{\kappa}{\chi} \frac{\beta \gamma_s}{\alpha \gamma_T} \approx 1 - \frac{4}{45} B^4 \equiv 1 + \frac{1}{45} \operatorname{Ra}_T (1 - \xi)$$

Отсюда следует максимальное (наименьшее по абсолютной величине) значение параметра Ra_T , при котором возможен рассматриваемый механизм неустойчивости: $Ra_{T_{cr}} = -45$ (это видно и из рис. 1). Этому значению соответствует и $Ra_s = -45$, поскольку, как видно из (9), речь идет о предельном случае $\xi \rightarrow 1$.

Функция F(B) в (12) с ростом аргумента *В* быстро стремится к единице (она построена на рис. 2). Следовательно, при больших значениях *В* соотношение (12) существенно упрощается и принимает вид

$$\xi \approx 1/B. \tag{14}$$

С учетом того, что

$$B = \sqrt[4]{R/4} = \sqrt[4]{-\text{Ra}_T(1-\xi)/4},$$

получаем упрощенное соотношение между безразмерными параметрами на нейтральной кривой

$$\xi \sqrt[4]{-(1-\xi)Ra_T/4} \approx 1.$$
 (15)

Как видно из (13), величина ξ представляет собой отношение абсциссы и ординаты на плоскости (рис. 1). Из этого рисунка видно, что на нейтральной кривой вдали от начала координат указанное отношение много меньше единицы. В этом случае можно сделать еще одно упрощение — пренебречь в (15) под корнем величиной ξ по сравнению с единицей. В итоге получим упрощенное выражение для нейтральной кривой при сильных стратификациях обеих субстанций:

$$\operatorname{Ra}_{T} \approx -\left[\left(\frac{\kappa}{\chi}\operatorname{Ra}_{s}\right)^{4}/4\right]^{1/3}.$$
 (16)

Эта кривая также постоена на рис. 1 (3). В данном приближении $\xi \approx \sqrt[4]{-4/\text{Ra}_T}$, что согласуется с использованным выше предположением о малости ξ на нейтральной кривой при достаточно устойчивых температурных стратификациях. Из последних соотношений нетрудно получить также следующее приближенное условие неустойчивости:

$$|N_s|^2 > \frac{2}{L} \frac{\chi}{\kappa} \sqrt[4]{4\kappa \nu N_T^6}.$$

Отсюда видно принципиальное отличие от известного механизма неутойчивости, обусловленной двойной (дифференциальной) диффузией. В настоящем случае неустойчивость в принципе возможна при сколь угодно устойчивой температурной и плотностной стратификации. При этом дестабилизация возможна и при одинаковых значениях коэффициентов переноса для двух субстанций, и при сколь угодно слабой неустойчивой стратификации примеси (если ширина канала L достаточно велика).

Отметим, что систему (2), (3) можно получить и без каких-либо предположений о малости амплитуд возмущений: нелинейные слагаемые в уравнениях гидродинамики и переноса тепла и примеси в вертикально-однородной задаче тождественно равны нулю. Таким образом, результаты настоящего раздела распространяются и на случай возмущений конечной амплитуды.

3. Неустойчивость механического равновесия у вертикальной поверхности

В рассмотренной выше задаче исследовалась устойчивость только вертикально-однородных возмущений. Такая симметрия позволяет рассматривать возмущения произвольной амплитуды, но не меньший интерес представляет задача о линейной устойчивости возмущений, зависящих и от вертикальной координаты *z*. Линеаризованная система уравнений в этом случае имеет вид

$$\begin{aligned} \frac{\partial u}{\partial t} &= -\frac{\partial P}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2} \right), \quad \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0, \\ \frac{\partial w}{\partial t} &= -\frac{\partial P}{\partial z} + \nu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial z^2} \right) + g(\alpha T - \beta s), \\ \frac{\partial T}{\partial t} + \gamma_T w &= \kappa \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2} \right), \\ \frac{\partial s}{\partial t} + \gamma_s w &= \chi \left(\frac{\partial^2 s}{\partial x^2} + \frac{\partial^2 s}{\partial z^2} \right), \end{aligned}$$

где u — составляющая скорости в направлении горизонтальной оси x, $P = p/p_0$. Рассматривается решение в области x > 0; на горизонтальной поверхности x = 0заданы те же краевые условия, что ранее на боковых границах канала, с добавлением условия непротекания $u|_{x=0} = 0$. Предполагается, что вдали от границы x = 0 все возмущения затухают. Исследуем возможность возникновения монотонной неустойчивости нормальных мод вида

$$u = U(x)\cos(kz)\exp(\omega t), \quad w = W(x)\sin(kz)\exp(\omega t),$$
$$P = \Phi(x)\cos(kz)\exp(\omega t), \quad T = \theta(x)\sin(kz)\exp(\omega t),$$
$$s = S(x)\cos(kz)\exp(\omega t),$$

где k — волновое число, U(x) и т.д. — соответствующие амплитуды. При $\omega = 0$ (имея в виду расчет порога неустойчивости) система уравнений для амплитуд имеет вид

$$\frac{\partial \Phi}{\partial x} = \nu \left(\frac{\partial^2 U}{\partial x^2} - k^2 U \right), \quad \frac{\partial U}{\partial x} + W = 0,$$
$$-\Phi = \nu \left(\frac{\partial^2 W}{\partial x^2} - k^2 W \right) + g \left(\alpha \theta - \beta S \right),$$
$$\gamma_T W = \kappa \left(\frac{\partial^2 \theta}{\partial x^2} - k^2 \theta \right), \quad \gamma_s W = \chi \left(\frac{\partial^2 S}{\partial x^2} - k^2 W \right). \quad (17)$$

Исключив из последней системы все неизвестные, кроме *W*, получим уравнение

$$\left(\frac{\partial^2}{\partial x^2} - k^2\right)^3 W = -k^4 R_k \frac{\partial^2 W}{\partial x^2}.$$
 (18)

Здесь безразмерный параметр R_k отличается от ранее введенного R лишь заменой масштаба длины $L/2 \rightarrow k^{-1}$:

$$\mathbf{R}_{k} = \frac{1}{\nu k^{4}} \left(\frac{N_{T}^{2}}{\kappa} + \frac{N_{s}^{2}}{\chi} \right) = \frac{N_{T}^{2}}{\kappa \nu k^{4}} \left(1 - \frac{\kappa}{\chi} \frac{\beta \gamma_{s}}{\alpha \gamma_{T}} \right).$$

Ищем решение уравнения (18) в виде суммы экспонент типа $\exp(\sigma kx)$. Характеристическое уравнение имеет вид

$$(\sigma^2 - 1)^3 = -\mathbf{R}_k \sigma^2. \tag{19}$$

С учетом затухания при $x \to \infty$ решение для вертикальной скорости представляет собой линейную комбинацию трех экспонент

$$w(x, z) = [C_1 \exp(k\sigma_1 x) + C_2 \exp(k\sigma_2 x) + C_3 \exp(k\sigma_3 x)] \sin(kz), \qquad (20)$$

где отобраны корни σ_i с отрицательными действительными частями.

Из уравнения неразрывности с учетом краевых условий

$$u(x,z) = -\cos(kz)\sum_{i=1}^{3} (C_i/\sigma_i)\exp(k\sigma_i x).$$
(21)

Проинтегрировав уравнения (17), с учетом (20) и краевых условий при $x \to \infty$, возмущения температуры и концентрации примеси можно представить в виде

$$T(x,z) = \left\{ C_T \exp(-kx) + \frac{\gamma_T}{k^2 \kappa} \sum_{i=1}^3 \frac{C_i}{\sigma_i^2 - 1} \exp(k\sigma_i x) \right\} \sin(kz), \quad (22)$$

$$s(x, z) = \left\{ C_s \exp(-kx) + \frac{\gamma_s}{k^2 \chi} \sum_{i=1}^3 \frac{C_i}{\sigma_i^2 - 1} \exp(k\sigma_i x) \right\} \sin(kz), \quad (23)$$

где C_T , C_s — постоянные интегрирования. Аналогично рассмотренной выше задаче они должны быть связаны соотношением $\alpha C_T - \beta C_s = 0$. С учетом краевых условий при x = 0 из (20) и последующих выражений получим системы уравнений для постоянных интегрирования

$$\sum_{j=1}^{3} C_{j} = 0, \quad \sum_{j=1}^{3} (C_{j}/\sigma_{j}) = 0,$$
$$\sum_{j=1}^{3} [(1 + \xi \sigma_{j})/(\sigma_{j}^{2} - 1)]C_{j} = 0.$$

Условие существования нетривиального решения, соответствующего границе устойчивости, — обращение в нуль определителя системы. В общем случае выражения для корней характеристического уравнения и соответствующий анализ решений весьма громоздки. Ограничимся здесь случаем больших значений параметра R_k , когда вследствие сильной фоновой гидростатической устойчивости, на первый взгляд, меньше всего оснований ожидать возможность существования неустойчивых возмущений. В этом предельном случае корни характеристического уравнения с отрицательными действительными частями имеют вид

$$\sigma_{1,2} \approx -(\mathbf{R}_k/4)^{1/4}(1\pm i), \quad \sigma_3 \approx -\mathbf{R}_k^{-1/2}.$$
 (24)

Это означает, что возмущения скорости и давления, вообще говоря, складываются из быстро затухающей и быстро осциллирующей моды (с характерным горизонтальным масштабом осцилляций и затухающей моды с характерным горизонтальным масштабом затухающей моды с характерным горизонтальным масштабом затухающей моды с характерным горизонтальным масштабом затухающей моды к^{-1} R_k^{1/2} \gg k^{k^{-1}}. В выражениях для возмущений температуры и концентрации примеси помимо быстро и медленно убывающих экспонент имеется "промежуточная" мода, убывающая на горизонтальном масштабе порядка k^{-1} .

В рассматриаемом пределе определитель системы имеет вид

$$\begin{vmatrix} 1 & 1 & 1 \\ -\frac{1}{B_k(1+i)} & -\frac{1}{B_k(1-i)} & -2B_k^2 \\ \frac{[1-\xi B_k(1+i)]}{2iB_k^2} & -\frac{[1-\xi B_k(1-i)]}{2iB_k^2} & -(1-\frac{\xi}{2B_k^2}) \end{vmatrix}, \ B_k = \sqrt[4]{R_k/4}.$$

С учетом того, что значение параметра B_k предполагается большим, нетрудно видеть, что два основных слагаемых в разложении определителя содержат произведения второго элемента последнего столбца и первых двух элементов последней строки. Алгебраическая сумма Анализ горизонтальной структуры нейтральных возмущений показывает, что возмущения вертикальной скорости в основном сосредоточены вблизи поверхности в тонком слое толщиной порядка $(kB_k)^{-1}$, соответствующей первым двум корням характеристического уравнения. Возмущения горизонтальной скорости и давления проникают в среду гораздо глубже — на расстояния порядка B_k^2/k , отвечающие третьему корню характеристического уравнения. Тем самым нейтральные возмущения представляют собой циркуляционные ячейки, вытянутые по горизонтали. Возмущения температуры и солености в основном сосредоточены в слое промежуточной толщины порядка k^{-1} — вертикального масштаба возмущений.

Заключение

Таким образом, показана возможность возникновения конвективной неустойчивости в двухкомпонентной среде при сколь угодно сильной гидростатической устойчивости и при одинаковых значениях коэффициентов переноса обеих субстанций, если краевые условия на вертикальной поверхности для этих субстанций различны.

Автор признателен М.В. Калашнику за ценные замечания.

Работа выполнены при поддержке РФФИ (проект № 04-05-64027) и МНТЦ (проект G-1217).

Список литературы

- Тернер Дж. Эффекты плавучести в жидкостях. М.: Мир, 1977. Terner J.S. Buoyancy effects in fluids. Cambridge: University Press, 1973.
- [2] Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972. 372 с.
- 3] Ингель Л.Х. // УФН. 2002. Т. 172. № 6. С. 691–699.
- [4] Ингель Л.Х. // ЖТФ. 2001. Т. 71. Вып. 1. С. 128–130.
- [5] Калашник М.В., Ингель Л.Х. // ЖЭТФ. 2006. Т. 130. № 1. С. 161–170.
- [6] Ингель Л.Х. // Докл. РАН. 2006. Т. 408. № 1. С. 92–95.