01;03 Нелинейные поправки к критическим условиям реализации неустойчивости заряженной границы раздела двух жидких сред

© А.И. Григорьев, Д.М. Пожарицкий, С.О. Ширяева

Ярославский государственный университет им. П.Г. Демидова, 150000 Ярославль, Россия e-mail: grig@uniyar.ac.ru

(Поступило в Редакцию 20 февраля 2008 г.)

Показано, что нелинейные поправки к частотам волн на заряженной границе раздела сред, появляющиеся в аналитических расчетах третьего порядка малости, приводят к изменению пропорциональному квадрату малого параметра критического значения параметра Тонкса—Френкеля и волнового числа наиболее неустойчивой моды. Знаки амплитудных коэффициентов нелинейных поправок меняются на противоположные при переходе через положения резонансов. Критические условия реализации неустойчивости волны на границе раздела сред могут в зависимости от ее длины как снижаться, так и увеличиваться за счет нелинейного взаимодействия волн.

PACS: 47.20.Cq, 47.20.Ma, 47.35.Lf

Введение

Исследование влияния нелинейного взаимодействия волн на критические условия реализации неустойчивости однородно заряженной границы раздела сред, которые можно моделировать идеальными несжимаемыми жидкостями, представляет интерес в связи с многочисленными техническими и технологическими приложениями феномена. Тем не менее изучение нелинейных особенностей физического механизма реализации этой неустойчивости находится в начальной стадии, и к настоящему времени выполнено лишь несколько нелинейных теоретических асимптотических анализов временной и пространственной эволюции неустойчивой по отношению к собственному заряду однородно заряженной свободной поверхности идеально проводящей жидкости (границы жидкости с вакуумом) [1,2], а также влияние нелинейного взаимодействия волн на критические условия реализации такой неустойчивости [3]. Впрочем, периодическое волновое движение на границе раздела идеальных несмешивающихся жидкостей неоднократно становилось предметом внимания ученых, уже хотя бы в связи с исследованием неустойчивостей Кельвина-Гельмгольца и Рэлея-Тейлора, причем аналитические расчеты проводились как в линейной, так и нелинейной постановках [4-8], а в [9] проведено аналитическое исследование влияния нелинейного взаимодействия волн на заряженной границе раздела сред на закономерности реализации неустойчивости Рэлея-Тейлора.

В настоящей работе будет рассмотрено влияние нелинейного взаимодействия капиллярно-гравитационных волн на заряженной границе раздела двух несмешивающихся жидких несжимаемых сред на критические условия реализцаии неустойчивости границы раздела по отношению к поверхностному заряду (аналог неустойчивости Тонкса-Френкеля).

1. Формулировка задачи

Пусть идеальные, несжимаемые, жидкости с плотностями ρ_1 и ρ_2 , где $\rho_1 > \rho_2$, заполняют в поле сил тяжести полупространства $z \leq 0$ и $z \geq 0$ в декартовой системе координат, орт \mathbf{e}_z которой направлен против направления ускорения силы тяжести $\mathbf{e}_z \parallel -\mathbf{g}$. Примем, что верхняя жидкость является диэлектриком с диэлектрической проницаемостью ε_* , нижняя — идеальным проводником, а на границе раздела сред, которая характеризуется коэффициентом поверхностного натяжения γ , однородно распределен электрический заряд с поверхностной плотностью σ так, что в верхней жидкости существует однородное электростатическое поле величины $E_0 \equiv 4\pi\sigma/\varepsilon_*$, направленное параллельно орту \mathbf{e}_z .

Будем рассматривать плоскую периодическую капиллярно-гравитационную волну конечной амплитуды, бегущую по границе раздела жидкостей в положительном направлении орта \mathbf{e}_x . Амплитуду волны *а* будем считать малой по сравнению с ее длиной и капиллярной постоянной нижней жидкости $\alpha \equiv \sqrt{\gamma/(\rho_1 g)}$. Деформация границы раздела жидкостей, связанная с волной, поле скоростей волнового движения, распределение давлений и электрического поля в окрестности искаженной волновым движением поверхности раздела жидкостей будут зависеть кроме времени *t* только от координат *x* и *z*. Поставим целью расчет параметров нелинейной волны в рассматриваемой системе в аналитической асимптотической процедуре с сохранением слагаемых третьего порядка малости по амплитуде волны.

Уравнение границы раздела жидкостей, искаженной бегущей волной, запишем в виде

 $z = \xi(x, t); \quad \xi(x, t) = a \cos(kx - \omega t),$

k и ω — волновое число и частота волны. Следует отметить, что чисто синусоидальный профиль волны сохраняется во времени только в линейном приближении по амплитуде волны и не является стационарным уже при расчетах второго порядка малости. Но в рамках классических работ по теории волн конечной амплитуды в идеальной несжимаемой жидкости [10–16] задача расчета волны конечной амплитуды во втором порядке малости трактовалась как задача определения профиля волны, не изменяющегося с течением времени. Как показано в [9,14,17], появление в расчетах более высокого чем второй порядка малости нелинейной квадратичной по малому параметру поправки к частоте приведет к тому, что фазовые скорости линейной по малому параметру волны и нелинейных поправок к ней будут различны. Это означает, что говорить о стационарном во времени профиле волны конечной амплитуды можно лишь на весьма ограниченных интервалах времени.

Математическая модель расчета нелинейного волнового движения в рассматриваемой системе имеет вид:

$$z \ge \xi: \qquad \Delta \Phi = 0; \quad \Delta \varphi_2 = 0; \qquad z \le \xi: \qquad \Delta \varphi_1 = 0;$$

$$z = \xi: \qquad \rho_2 \frac{\partial \varphi_2}{\partial t} + \rho_2 g z + \frac{\rho_2}{2} (\nabla \varphi_2)^2 + \rho_1 \frac{\partial \varphi_1}{\partial t}$$

$$-\rho_1 g z - \frac{\rho_1}{2} (\nabla \varphi_1)^2 + \frac{\varepsilon_* (\nabla \Phi)^2}{8\pi}$$

$$= -\gamma \frac{\partial^2 \xi}{\partial x^2} \left(1 + \left(\frac{\partial \xi}{\partial x}\right)^2 \right)^{-3./2};$$

$$\frac{\partial \xi}{\partial t} + \frac{\partial \xi}{\partial x} \frac{\partial \varphi_1}{\partial x} = \frac{\partial \varphi_1}{\partial z}; \quad \frac{\partial \xi}{\partial t} + \frac{\partial \xi}{\partial x} \frac{\partial \varphi_2}{\partial x} = \frac{\partial \varphi_2}{\partial z}; \quad \Phi = 0;$$

$$z \to \infty: \qquad -\nabla \Phi \to E_0 \mathbf{e}_z; \quad \nabla \varphi_2 \to 0;$$

$$z \to -\infty: \qquad \nabla \varphi_1 \to 0.$$

Кроме того, для замыкания задачи необходимо задать два начальных условия. В качестве первого начального условия зададим профиль волны в начальный момент времени:

$$t = 0$$
: $\xi(x, t) = a \cos(kx - \omega t)$.

Второе начальное условие, необходимое для замыкания задачи, формулируется в виде требования, чтобы амплитудные множители при возможных нелинейных поправках к профилю волны с исходным аргументом $\theta \equiv kx - \omega_0 t$ были равны нулю, как это делалось ранее [3,9,14,17] в задачах такого типа.

Все расчеты будут проводиться в безразмерных переменных при $\rho_1 = g = \gamma = 1$, а за безразмерными физическими величинами будут сохранены прежние обозначения. Амплитуда волны обезразмеривается на капиллярную постоянную нижней жидкости и в соответствии со сказанным выше будет малой величиной, по которой будет проводиться асимптотическое разложение.

2. Запись решения

Приведенная математическая формулировка с точностью до обозначений эквивалентна формулировке ранее решенной задачи [9] о расчете нелинейной стадии реализации неустойчивости Рэлея—Тейлора на заряженной границе раздела сред. В этой связи не станем детально описывать математическую процедуру отыскания решения, отсылая заинтересованного читателя к [9], где процедура решения прокомментирована достаточно подробно, отметим лишь, что решение отыскивается методом многих временных масштабов [13–14], и приведем сразу окончательное выражение для профиля $\xi(x, t)$ нелинейной волны на однородно заряженной поверхности раздела жидкостей с учетом нелинейных поправок третьего порядка малости в безразмерных переменных, в которых $\rho_1 = g = \gamma = 1$:

$$\begin{split} \xi(x,t) &= a\cos(\theta_*) + a^2\Omega_{21}\cos(2\theta_*) + a^3\Omega_{31}\cos(3\theta);\\ \theta_* &\equiv \theta + (\delta\omega_0^{-1})a^2t \equiv kx - \omega_0t - (\delta\omega_0^{-1})a^2t;\\ \Omega_{21} &= k\left((1-\rho)(1-\rho+k^2) - 2Wk\right)/\Xi_1;\\ \Omega_{31} &= k^2\left(2k^4(3\rho^2 - 10\rho + 3) + 32W^2k^2\right.\\ &+ (1-\rho)(21\rho^2 - 22\rho + 21)k^2 - 32Wk(1-\rho)\left[(1-\rho) + k^2\right]\\ &+ (1-\rho)^2[6\rho^2 - 20\rho + 6]\right)/\Xi_1\Xi_2;\\ \delta &\equiv k^3\left(16W^2k^2 - 16Wk(1-\rho)\left[(1-\rho) + k^2\right]\right.\\ &+ 8(1-\rho)^2(1+\rho^2) + k^2(1-\rho)(1-30\rho + \rho^2)\\ &+ 2k^4(1-6\rho + \rho^2)\right)/8(1+\rho)^2\Xi_1;\\ \omega_0^2 &\equiv \left[\frac{k}{1+\rho}\left(k^2 - Wk + (1-\rho)\right)\right];\\ W &= \varepsilon_* E_0^2/4\pi; \quad \rho = \rho_2/\rho_1;\\ \Xi_1 &\equiv 2(1+\rho)\left[(1-\rho) - 2k^2\right];\\ \Xi_2 &\equiv 8(1+\rho)\left[(1-\rho) - 3k^2\right]. \end{split}$$

Аналитические выражения для потенциалов полей скоростей в нижней $\varphi_1(\mathbf{r}, t)$ и верхней $\varphi_2(\mathbf{r}, t)$ средах и для потенциала электрического поля $\Phi(\mathbf{r}, t)$ имеют качественно сходный (в смысле математических особенностей выписанных выражений) вид (см. [9,18]) и здесь не приводятся.

3. Анализ полученных результатов

3.1. Нелинейные поправки к критическим условиям реализации неустойчивости заряженной границы жидкостей

Устойчивость границы нарушается, когда квадрат частоты проходит через нуль в область отрицательных значений: $\omega^2 \equiv [\omega_0 + (\delta \omega_0^{-1})a^2]^2 \leq 0$. В третьем порядке малости по безразмерной амплитуде волны это условие запишется в виде

$$\begin{split} \omega^2(k,\rho,W,a) &= \left(\omega_0(k,\rho,W) + \frac{\delta(k,\rho,W)}{\omega_0(k,\rho,W)}a^2\right)^2\\ &\cong \omega_0^2(k,\rho,W) + 2\delta(k,\rho,W)a^2 \leq 0. \end{split}$$

Видно, что знак нелинейной поправки к частоте $\delta(k, \rho, W)$ определяет влияние нелинейного взаимодействия на устойчивость границы раздела сред по отношению к распределенному на ней электрическому заряду. Нелинейное взаимодействие приводит к изменению как величины безразмерного параметра Тонкса-Френкеля W, который характеризует устойчивость плоской однородно заряженной поверхности электропроводной жидкости по отношению к поверхностному заряду, так и безразмерного волнового числа k наиболее неустойчивости величины $W = W_{cr}$ и $k = k_{cr}$ определяются из системы уравнений

$$\omega_0^2(k,\rho,W) + 2\delta(k,\rho,W)a^2 = 0;$$

$$\left[\partial\omega(k,\rho,W)/\partial k\right] = 0. \tag{1}$$

Система (1) сингулярна при $a^2 \rightarrow 0$, поскольку содержит малый параметр a^2 при старшей степени *W*. Ее решения ищутся в виде

$$W_{\rm cr} = W_0 - a^2 w(k_{\rm cr}, \rho); \quad k_{\rm cr} = k_0 - a^2 \kappa(\rho);$$
 (2)

где W₀ и k₀ — решения линейного приближения:

$$W_0 = k + \frac{1-\rho}{k}; \quad k_0 = \sqrt{1-\rho}.$$

Подставив (2) в систему уравнений (1), можно найти

$$\begin{split} W_{\rm cr}(\rho, a^2) &= 2\sqrt{1-\rho} \\ \times \left\{ 1 - a^2 \left[(1-\rho)(11+38\rho+11\rho^2)/16(1+\rho)^2 \right] \right\}; \ (3) \\ k_{\rm cr}(\rho, a^2) &= \sqrt{1-\rho} \\ &\times \left\{ 1 - a^2 \left[(1-\rho)(23+94\rho+23\rho^2)/16(1+\rho)^2 \right] \right\}. \end{split}$$

Зависимости (3) и (4) проиллюстрированы на рис. 1, а сами нелинейные поправки $w(k_{\rm cr}, \rho)$ и $\kappa(\rho)$ проиллюстрированы — на рис. 2.

Рис. 1. Зависимости от отношения плотностей сред ρ критических значений: параметра Тонкса-Френкеля $W_{\rm cr}$ (кривая *1*) и безразмерного волнового числа $k_{\rm cr}$ (2), рассчитанные при $a^2 = 0.1$.

Рис. 2. Зависимости от отношения плотностей сред ρ величин нелинейных поправок: w (кривая I) к безразмерному параметру $W_{\rm cr}$ и κ (2) к безразмерному волновому числу $k_{\rm cr}$, рассчитанные при $a^2 = 0.1$.

Рис. З. Зависимости величин $\chi \equiv w(k_{\rm cr}, \rho)/W_0$ (кривая l) и $\eta \equiv \kappa(\rho)/k_0$ (2) от отношения плотностей сред ρ .

Из приведенных зависимостей видно, что в пределе $\rho \rightarrow 0$ выражения (3) и (4) совпадают с критическими условиями реализации неустойчивости однородно заряженной свободной поверхности жидкости, рассчитанными с учетом влияния нелинейного взаимодействия волн [3]. Из выражения (3), (4) и рис. 1 и 2 видно, что учет нелинейного взаимодействия волн приводит к снижению критической для реализации неустойчивости границы раздела величины безразмерного параметра W и к увеличению длины волны, обладающей максимальным инкрементом неустойчивости.

На рис. 3 приведены графики зависимостей

$$\chi \equiv w(k_{
m cr},
ho)/W_0, \quad \eta \equiv \kappa(
ho)/k_0,$$

характеризующие вклад нелинейных поправок в критические значения параметров $W_{\rm cr}$ и $k_{\rm cr}$ при различных значениях отношения плотностей сред ρ . Несложно видеть, что в пределе $\rho \to 1$ влияние нелинейных поправок снижается, а слабовыраженного максимума оно дости-

гает при $\rho \approx 0.1$ Обнаруженный факт быстрого убывания критического значения параметра W при $\rho \to 1$, может быть использован для трактовки устойчивости межфазных границ в электрическом поле, например, в экспериментах [19,20]. В этих работах явление самоорганизации магнитодиэлектрического коллоида во внешнем электрическом поле путем возникновения плоских кольцевых и трехмерных вихрей в тонком слое коллоида связывается с неустойчивостью в электрическом поле межфазной границы при $\rho \sim 1$.

Несмотря на малость значений нелинейных поправок к критическим условиям реализации неустойчивости заряженной поверхности жидкости полученные аналитические выражения позволяют истолковать физический механизм реализации неустойчивости заряженной поверхности жидкости с образованием на ней эмитирующих выступов (конусов Тейлора) [1,2,21,22]. Конусы Тейлора возникают на нелинейной стадии реализации неустойчивости заряженной поверхности жидкости, и с их вершин происходит сборос избыточного заряда путем эмиссии высокодисперсных сильно заряженных капелек. Аналитические выражения (3), (4) дают основу для исследования пространственновременной эволюции конусов Тейлора аналогично тому, как это сделано в [1,2] для свободной плоской однородно заряженной поверхности жидкости или для капли в [23-25].

3.2. Резонансный характер нелинейных поправок

3.2.1. Положения резонансов в амплитудном коэффициенте Ω_{21}

Из найденного выражения для профиля нелинейной волны видно, что при $k = k_1 = \sqrt{(1-\rho)/2}$ в знаменателе амплитудного коэффициента поправки второго порядка малости Ω_{21} множитель Ξ_1 обращается в нуль (коэффициент Ω_{21} при этом стремится к бесконечности), что в теории нелинейных волн [13,14] трактуется как наличие резонансного взаимодействия. Согласно [26], волны с волновыми числами k_1 и k_2 взаимодействуют, если для них выполняются соотношения

$$k_1 + k_3 = k_2, \quad \omega(k_1) + \omega(k_3) = \omega(k_2),$$
 (5)

определяющие наличие взаимодействия, которое называется внутренним комбинационным. В рассматриваемой задаче подобная ситуация реализуется в частном случае, когда $k_1 = k_3$:

$$2k_1 = k_2, \quad 2\omega(k_1) = \omega(k_2),$$
 (6)

Рис. 4. График зависимости амплитудного множителя Ω_{21} от безразмерного волнового числа *k* и параметра Тонкса–Френкеля *W* при фиксированном значении отношения плотностей $\rho = 0.3$, пересеченный плоскостью $\Omega_{21} = 0$.

а взаимодействие называется вырожденным. В самом деле, при $k_1 = k_3 = \sqrt{(1-\rho)/2}$ и $k_2 = \sqrt{2(1-\rho)}$ имеем

$$2k_{1} \equiv 2\sqrt{\frac{1-\rho}{2}} = \sqrt{2(1-\rho)} \equiv k_{2},$$

$$2\omega_{0}(k_{1}) \equiv 2\sqrt{\frac{k_{1}}{(1+\rho)} \left(k_{1}^{2} - Wk_{1} + (1-\rho)\right)}$$

$$\equiv 2\sqrt{\frac{\sqrt{(1-\rho)/2}}{1+\rho} \left(\left(\sqrt{\frac{(1-\rho)}{2}}\right)^{2} - W\sqrt{\frac{1-\rho}{2}} + (1-\rho)\right)}$$

$$\equiv \sqrt{\frac{2}{1+\rho} \sqrt{\frac{1-\rho}{2}} \left((1-\rho) - W\sqrt{2(1-\rho)} + 2(1-\rho)\right)}$$

$$\equiv \sqrt{\frac{\sqrt{2(1-\rho)}}{1+\rho} \left((1-\rho) - W\sqrt{2(1-\rho)} + 2(1-\rho)\right)}$$

$$\equiv \sqrt{\frac{k_{2}}{1+\rho} \left((1-\rho) - Wk_{2} + k_{2}^{2}\right)} = \omega_{0}(k_{2}) \qquad (7)$$

$$\equiv \sqrt{\frac{1+\rho}{1+\rho}} ((1-\rho) - wk_2 + k_2) \equiv \omega_0(k_2).$$
 (7)
При выполнении условий (6) длинная волна с волно-
ым числом $k = k_1$, заданная в начальный момент вре-

вым числом $k = k_1$, заданная в начальный момент времени, взаимодействуя со второй, более короткой, волной с волновым числом $k_2 = 2k_1$, передает ей энергию. Если в начальный момент времени задана волна с волновым числом $k_2 = 2k_1$, перенос энергии к волне меньшим волновым числом k_1 невозможен [27,28]. В более общей ситуации, когда в начальный момент времени возбуждено несколько волн, для трех из которых выполнится условие взаимодействия (5), перенос энергии между волнами идет в обоих направлениях: от длинных к коротким и от коротких к длинным.

На рис. 4 приведены зависимости величны коэффициента Ω₂₁ при нелинейной поправке второго порядка

Рис. 5. График зависимости амплитудного множителя Ω_{31} от безразмерного волнового числа *k* и параметра Тонкса–Френкеля *W* при фиксированном значении отношения плотностей $\rho = 0.3$, пересеченный плоскостью $\Omega_{31} = 0$.

малости к профилю волны от физически значимых аргументов: параметра W и умноженного на капиллярную постоянную волнового числа k. Видно, что при переходе через положения резонанса знак Ω_{21} изменяется на противоположный.

Из выражения для нелинейной поправки к частоте $\delta(k, \rho, W)$ видно, что она также имеет резонансный вид, а сам резонанс, как и в выражении Ω_{21} , обусловлен обращением в нуль коэффициента Ξ_1 , стоящего в знаменателе.

3.2.2. Положения резонансов в амплитудном коэффициенте Ω_{31}

Амплитудный коэффициент поправки к профилю нелинейной волны третьего порядка малости Ω_{31} имеет уже два резонанса: при $k = k_1 = \sqrt{(1-\rho)/2}$ и при $k = k_2 = \sqrt{(1-\rho)/3}$ (что соответствует условиям обращения в нуль множителей Ξ_1 и Ξ_2 в знаменателе Ω_{31}). Первый из этих резонансов аналогичен разобранному выше резонансу у коэффициента Ω_{21} , а второй реализуется в вырожденном варианте для взаимодействия с волной $k = \sqrt{3(1-\rho)}$.

На рис. 5 приведены зависимости величины коэффициента Ω_{31} при нелинейной поправке третьего порядка малости к профилю волны от физически значимых аргументов: параметра W и обезразмеренного на капиллярную постоянную волнового числа. Видно, что так же как и для Ω_{21} , при переходе через положения любого из резонансов знак Ω_{31} изменяется на противоположный. Направление перекачки энергии в окрестности нового (по сравнению с Ω_{21}) резонанса будет таким же, как и ранее: энергия будет перекачиваться от длинных волн с волновыми числами $k = k_2$ к более коротким волнам с $k = 3k_2$, но сам эффект будет иметь более высокий порядок малости. Следует также отметить, что резонансы характерны и для нелинейных поправок к полям скоростей течения жидкости, связанного с нелинейной волной, в обеих средах.

Заключение

В проведенном аналитическом исследовании выяснилось, что нелинейное взаимодействие волн на однородно заряженной границе раздела несмешивающихся жидкостей приводит к снижению критических условий ее неустойчивости. Критическая для реализации неустойчивости поверхностная плотность заряда на границе раздела и волновое число наиболее неустойчивой волны снижаются пропорционально квадрату амплитуды волны.

Работа выполнена в рамках тематического плана НИР вуза 2008 г. и при поддержке гранта РФФИ № 06-01-00066-а.

Список литературы

- [1] Григорьев А.И., Ширяева С.О., Белоножко Д.Ф., Климов А.В. // ЭОМ. 2004. № 4. С. 34–40.
- [2] Григорьев А.И., Ширяева С.О., Белоножко Д.Ф., Климов А.В. // ЖТФ. 2005. Т. 75. Вып. 2. С. 19–25.
- [3] Климов А.В., Белоножко Д.Ф., Григорьев А.И. // ЖТФ. 2004. Т. 74. Вып. 1. С. 32–39.
- [4] Миндлин И.М. // Изв. РАН. МЖГ. 1994. № 3. С. 135–143.
- [5] Кузнецов Е.А., Лушников П.М. // ЖЭТФ. 1995. Т. 108. № 2. С. 614–630.
- [6] Цвелодуб О.Ю. // Изв. РАН. МЖГ. 2000. № 1. С. 92–98.
- [7] Захватаев В.Е. // Изв. РАН. МЖГ. 2000. № 2. С. 45-55.
- [8] Хабахпашев Г.Х. // ПМТФ. 2005. № 6. С. 45–57.
- [9] Григорьев А.И., Пожарицкий Д.М. // ЖТФ. 2008. Т. 78.
 Вып. 4. С. 35–45.
- [10] *Уизем Дж.* Линейные и нелинейные волны. М.: Мир, 1977. 622 с.
- [11] Michell J.H. // Phil. Mag. S. 5. 1893. Vol. 36. N 22. P. 430– 437.
- [12] Wilton J.R. // Phil. Mag. S. 6. 1915. Vol. 29. N 173. P. 688– 700.
- [13] Nayfeh A.H. // Phys. Fluids. 1970. Vol. 13. N 3. P. 545-550.
- [14] Nayfeh A.H., Hassan S.D. // J. Fluid Mech. Pt. 3. 1971. Vol. 48. P. 463–475.
- [15] Shugan I., Voliak K. // J. Fluid Mech. 1998. Vol. 368. P. 321-338.
- [16] Стокер Дж. Волны на воде. М.: ИЛ, 1959. 617 с.
- [17] Белоножко Д.Ф., Григорьев А.И. // Изв. РАН. МЖГ. 2003.
 № 6. С. 102–109.
- [18] Григорьев А.И., Пожарицкий Д.М., Климов А.В. // ЭОМ. 2006. № 5. С. 28–37.
- [19] Кожевников В.М., Чуенкова И.Ю., Данилов М.И., Ястребов С.С. // ЖТФ. 2006. Т. 76. Вып. 7. С. 129–131.

- [20] *Ястребов С.С.* Динамические структуры в тонком слое магнитодиэлектрического коллоида при воздействии электрического поля. Автореф. дисс. к.ф.м.н. Ставрополь, 2008. 25 с.
- [21] *Зубарев Н.М., Зубарева О.В. //* Письма в ЖТФ. 2004. Т. 30. Вып. 21. С. 39–43.
- [22] Suvorov V.G., Zubarev N.M. // J. Phys. D: Appl. Phys. 2004. Vol. 37. P. 289–297.
- [23] Григорьев А.И., Ширяева С.О., Григорьева И.Д. // ЖТФ. 1995. Т. 65. Вып. 9. С. 39–45.
- [24] Григорьева А.И. // Письма в ЖТФ. 1998. Т. 24. Вып. 24. С. 36-40.
- [25] Ширяева С.О. // Письма в ЖТФ. 2000. Т. 26. Вып. 4. С. 5–8.
- [26] Филипс М.О. // Нелинейные волны. М.: 1977. С. 197-220.
- [27] Ширяева С.О. // Письма в ЖТФ. 2000. Т. 26. Вып. 22. С. 76-83.
- [28] Ширяева С.О., Жаров А.Н., Григорьев А.И. // ЖТФ. 2004. Т. 74. Вып. 1. С. 10–20.