06,11,13

Диэлектрические свойства пористых оксидов алюминия и кремния с включениями триглицинсульфата и его модифицированных аналогов

© О.М. Голицына¹, С.Н. Дрождин¹, В.Н. Нечаев², А.В. Висковатых², В.М. Кашкаров¹, А.Е. Гриднев¹, В.В. Чернышев¹

¹ Воронежский государственный университет, Воронеж, Россия ² Воронежский государственный технический университет, Воронеж, Россия E-mail: golitsynaom@yandex.ru

(Поступила в Редакцию 26 июня 2012 г.)

Исследованы температурные зависимости емкости и проводимости композиционных материалов, полученных путем внедрения сегнетоэлектрика ТГС и его аналогов — ТГС с примесями L, α-аланина и хрома в матрицы пористых Al₂O₃ и SiO₂. Установлено, что процессы проводимости изученных структур связаны с переносом заряда преимущественно через внедренный в пористую матрицу сегнетоэлектрик. Предложен механизм смещения температуры фазового перехода сегнетоэлектрического включения в условиях "ограниченной геометрии", обусловленный различием коэффициентов теплового расширения пористой матрицы и внедренного сегнетоэлектрика.

1. Введение

Изучение композиционных материалов на основе пористых матриц — объемных или тонкопленочных, субмикронные или нанометровые поры которых заполнены сегнетоактивным веществом, представляет большой научный интерес, а также и определенный практический интерес, связанный с интенсивным развитием нанотехнологий [1–5].

Композиционные пленки на основе пористых оксидов алюминия (Al₂O₃) и кремния (SiO₂) с включениями сегнетоэлектрика триглицинсульфата (ТГС) выделяются среди многообразия этих материалов сравнительной простотой получения [6,7]. ТГС, благодаря своей высокой растворимости, легко вводится из водного раствора в пористые матрицы с порами различной топологии и размеров. Свойства объемных кристаллов ТГС с фазовым переходом второго рода при температуре $T = 49^{\circ}$ С хорошо изучены и подробно представлены в научной литературе [8]. Исследования сегнетоэлектрических наноструктур на основе пористого Al_2O_3 показали [7,9,10], что сегнетоэлектрическая фаза этих материалов смещена в область более высоких температур по сравнению с объемными сегнетоэлектриками, используемыми в качестве наполнителя. При этом абсолютные значения их диэлектрических характеристик значительно выше, чем у массивных сегнетоэлектриков [7,9]. Таким образом, осаждение ТГС в пористые матрицы расширяет функциональные возможности вводимой компоненты, и практическая значимость этих материалов существенно повышается. Однако отсутствие систематических исследований структур на основе пористых матриц с включениями ТГС и его изоморфов значительно ограничивает

применение таких материалов и не позволяет строить модели, адекватно объясняющие природу их физических свойств.

В настоящей работе проведены исследования диэлектрических свойств композиционных материалов, полученных путем внедрения сегнетоэлектрика ТГС и его аналогов — ТГС с примесями L, α -аланина (АТГС) и хрома (ТГС + Cr³⁺) в матрицы пористых Al₂O₃ и SiO₂.

2. Методики приготовления образцов

Пористые пленки Al₂O₃ с регулярной системой цилиндрических пор диаметром 110 nm и глубиной 5 µm (рис. 1) формировались в ходе 30-минутного электрохимического травления поверхности алюминиевой фольги в фосфорной кислоте. Матрица пористого SiO2 со случайной системой пор в виде цилиндрических ячеек глубиной 10 µm и диаметром 500 nm формировалась в процессе 20-минутного электрохимического травления подложки (100) монокристаллического Si в смеси плавиковой кислоты и изопропилового спирта с добавлением перекиси водорода. Исследования морфологии поверхности пористых Al₂O₃ и SiO₂ проводились методом растровой электронной микроскопии (РЭМ) на микроскопе JEOL 6510 (рис. 2, 3). Полученные электронные микрофотографии демонстрируют более рыхлую пористую структуру SiO₂ с меняющейся по глубине толщиной стенок по сравнению с регулярной цилиндрической пористой структурой Al₂O₃.

Из-за высокой адсорбционной способности пористых оксидов Al и Si диэлектрические характеристики этих структур существенно меняются с течением времени [7]. Поэтому непосредственно перед внедрением

Рис. 1. Схематическое представление геометрии поверхности образцов пористого оксида алюминия.

сегнетоэлектрика свежеприготовленные пористые матрицы Al₂O₃ и SiO₂ выдерживались 24 h при комнатной температуре в вакууме под давлением $p = 10^{-4}$ mm Hg. Сегнетоэлектрик осаждался в поры в ходе его кристаллизации из пересыщенных водных растворов ТГС, АТГС (10 wt.% в растворе L, α -аланина), ТГС + Сг³⁺ (Cr³⁺ не более 10 wt.% в растворе) методом понижения температуры от 55°C до 20°C. Микрокристаллы ТГС (АТГС, ТГС + Cr^{3+}), возникавшие при этом на поверхности образцов вне пор, удалялись тщательной полировкой поверхности. После этого образцы отжигались в течение 3 h при температуре 100°С, чтобы понизить содержание в них структурированной воды и уменьшить ее влияние на диэлектрический отклик изучаемых структур. Электроды наносились путем вакуумного распыления серебра на обе поверхности образцов. На одну поверхность образца серебро наносилось

Рис. 2. Морфология поверхности пористого оксида Al, наблюдаемая методом РЭМ на микроскопе JEOL 6510.

Рис. 3. Изображение поверхности пористого оксида Si, полученное методом РЭМ на микроскопе JEOL 6510.

через маску с круглым отверстием диаметром 8 mm; другая поверхность покрывалась серебром полностью. При измерениях образцы находились в термостате, точность стабилизации температуры в котором составляла ± 0.1 К. Измерение диэлектрических характеристик — емкости *C* и проводимости *G* проводилось в интервале температур от 20 до 100° С с помощью моста ВМ-484 Tesla на частоте 1.592 kHz в измерительном поле с амплитудой $U_0 = 0.3$ V. В промежутках между измерениями образцы хранились при комнатной температуре в среде с постоянной влажностью ~ 50%.

3. Экспериментальные результаты

На рис. 4 представлены температурные зависимости емкости для свежеприготовленных образцов пористого

Рис. 4. Температурные зависимости емкости *C* свежеприготовленных образцов пористого оксида Al с сегнетоэлектрическими включениями: $I - Al_2O_3 + T\Gamma C$; $2 - Al_2O_3 + AT\Gamma C$; $3 - Al_2O_3 + T\Gamma C + Cr^{3+}$.

Рис. 5. Зависимости C(T) для образцов пористого оксида Al с сегнетовключениями через 3 месяца: $I - Al_2O_3 + T\GammaC$; $2 - Al_2O_3 + AT\GammaC$; $3 - Al_2O_3 + T\GammaC + Cr^{3+}$.

оксида Al с включениями TГС и его модификаций. Для Al₂O₃ + TГС (кривая *I*) максимальное значение *C* наблюдается при $T = 54^{\circ}$ С. Для Al₂O₃ + ATГС (кривая 2) и Al₂O₃ + TГС + Cr³⁺ (кривая 3) аномальный характер зависимостей C(T) сохраняется, но их максимумы размыты по сравнению с Al₂O₃ + ТГС, что обычно наблюдается и для массивных кристаллов ATГС и TГС + Cr³⁺. С течением времени (через 3 месяца выдержки в атмосфере с 50% влажностью) значения *C* увеличиваются (что ранее наблюдалось и обсуждалось в [7]), а максимум зависимости C(T) сдвигается в область более высоких температур (рис. 5).

На рис. 6 для тех же образцов представлены температурные зависимости проводимости G, которые каче-

ственно повторяют зависимости C(T) (рис. 4). По абсолютной величине проводимость исследуемых композитов на основе Al_2O_3 превосходит проводимость объемных кристаллов семейства TГС. После выдержки (3 месяца в атмосфере с 50% влажностью) абсолютные значения *G* незначительно уменьшаются, а максимум зависимости G(T) или исчезает ($Al_2O_3 + T\GammaC$ рис. 7, кривая *I*), или становится менее выраженным ($Al_2O_3 + AT\GammaC$ — рис. 7, кривая *2*; $Al_2O_3 + TGS$ + Cr^{3+} — рис. 7, кривая *3*).

Большие абсолютные значения *G* в рассматриваемых композиционных материалах связаны, по-видимому, с вкладом в их проводимость зарядов на границах раздела "сегнетоэлектрическое включение — стенки пор". Эти заряды постепенно закрепляются на центрах пиннинга,

Рис. 6. Температурные зависимости проводимости *G* свежеприготовленных образцов пористого оксида Al с сегнетоэлектрическими включениями: $I - Al_2O_3 + T\Gamma C$; $2 - Al_2O_3 + AT\Gamma C$; $3 - Al_2O_3 + T\Gamma C + Cr^{3+}$.

Рис. 7. Зависимости G(T) для образцов Al₂O₃ через 3 месяца: $I - Al_2O_3 + T\GammaC$; $2 - Al_2O_3 + AT\GammaC$; $3 - Al_2O_3 + T\GammaC + Cr^{3+}$.

Рис. 8. Зависимости $\ln G$ (1/*T*) для свежеприготовленного образца пористого $Al_2O_3 + T\Gamma C + Cr^{3+}$.

Рис. 9. Зависимости $\ln G(1/T)$ для образца пористого $Al_2O_3 + T\Gamma C$ через 3 месяца.

что со временем и приводит к уменьшению проводимости.

Известно [11], что температурная зависимость проводимости сегнетоэлектрических кристаллов может быть описана выражением

$$G = G_0 e^{-(W/kT)},\tag{1}$$

(W -энергия активации процессов проводимости, k -постоянная Больцмана), что позволяет по зависимостям $\ln G = f(1/T)$ рассчитать энергию активации W как для массивных сегнетоэлектриков, так и для сегнетокомпонент в условиях ограниченной геометрии [12].

Для исследованных пористых структур с включениями ТГС и его изоморфов зависимости $\ln G = f(1/T)$ могут быть аппроксимированы двумя прямыми (рис. 8), претерпевающими излом в температурной области фазового перехода объемного ТГС. Вследствие адсорбции паров воды на поверхности образцов при их длительном хранении на воздухе на зависимостях $\ln G = f(1/T)$ появляется дополнительная точка перегиба в температурном интервале $34-38^{\circ}$ С (рис. 9). Изменение наклона прямых $\ln G(1/T)$ в температурном интервале $\sim 34-38^{\circ}$ С можно связать с окончанием процессов активного испарения воды с поверхности образца при его нагреве [7].

Значения W, рассчитанные по наклону прямых $\ln G(1/T)$, представлены в таблице.

Известные из литературы значения энергии активации процессов проводимости для объемных кристаллов номинально чистого [11] и примесного (дейтерированного) ТГС [13] составляют соответственно 0.4 eV и 0.93 eV в сегнетофазе; 0.6 eV и 0.24 eV — в парафазе. На основании данных, представленных в таблице, можно сделать вывод, что значения энергии W для композиционных материалов $Al_2O_3 + T\Gamma C$ и $Al_2O_3 + T\Gamma C + Cr^{3+}$ примерно совпадают с ее значениями для массивных сегнетоэлектриков группы ТГС. Изменение энергии активации вблизи Т_С показывает, что перенос заряда в изучаемых композиционных материалах осуществляется преимущественно через внедренный сегнетоэлектрик. С течением времени абсолютные значения W уменьшаются вследствие возможной компенсации зарядов на поверхности сегнетоэлектрических включений зарядами, перетекающими по стенкам пор или в адсорбированной воде [14].

Рентгенодифракционные исследования нанокомпозитных материалов на основе пористого оксида алюминия с включениями ТГС и АТГС на дифрактометре ДРОН-3 (анод CuK α_1 ; длина волны $\lambda = 1.5408$ Å) по методу порошка в непрерывном режиме сканирования поверхности выявили частичное заполнение пор включениями АТГС. Наиболее вероятной причиной затруднительного вхождения кристаллитов АТГС в матрицу Al₂O₃ является больший размер молекулы α -аланина по сравнению с молекулой глицина [15]. По-видимому, именно неполным заполнением пор матрицы включениями АТГС можно объяснить меньшие значения энергии активации композита Al₂O₃ + АТГС по сравнению с Al₂O₃ + ТГС (см. таблицу).

"Ветвистость" пористой структуры SiO $_2$ (что затрудняет внедрение сегнетоэлектрика в матрицу), а также

Свежеприготовленные образцы			
T,°C	W, eV		
	$Al_2O_3+T\Gamma C$	$Al_2O_3 + AT\Gamma C$	$Al_2O_3 + T\Gamma C + Cr^{3+}$
20-54	0.49	0.17	0.72
57-80	0.53	0.22	0.21
Через 3 месяца			
20-34	0.18	0.12	0.45
36 - 54	0.32	0.12	0.82
55-80	0.20	0.13	0.43

Рис. 10. Зависимости C(T) для образцов пористого оксида кремния: I — свежеприготовленный образец с включениями ТГС; 2 — свежеприготовленный образец с включениями АТГС; 3 — образец пористого оксида Si + ТГС через 3 месяца; 4 — образец пористого оксида Si + АТГС через 3 месяца.

уменьшение плотности пор по сравнению с матрицей Al_2O_3 в совокупности, вероятно, и приводят к уменьшению абсолютных значений C(G) при введении ТГС и АТГС в пористый оксид кремния. Однако аномальный характер зависимостей C(T) и G(T) со слабым максимумом, приходящимся на температурную область 54–60°С (рис. 10, кривые 1 и 2), сохраняется и для образцов SiO₂ + ТГС и SiO₂ + АТГС. По прошествии 3 месяцев абсолютные значения C и G увеличиваются, как и для Al_2O_3 + ТГС, а слабо выраженный максимум сохраняет свое положение на оси температур (рис. 10, кривые 3, 4).

Таким образом, представленные экспериментальные зависимости C(T) и G(T) демонстрируют смещение температуры фазового перехода в сторону более высоких температур для ТГС и его аналогов в пористых матрицах Al_2O_3 и SiO₂ по сравнению с объемным ТГС.

В наноразмерных сегнетоструктурах такие факторы, как неоднородное распределение поляризации, связанное с формой сегнетоэлектрического включения или с граничными условиями на границе раздела фаз композитного материала, деполяризующие электрические поля и т.д., приводят к понижению T_C [12,16–19].

В некоторых ситуациях для пористых структур, как и в данной работе, наблюдалось повышение температуры фазового перехода T_C [7,9]. Во-первых, это может быть обусловлено электростатическим взаимодействием сегнетоэлектрических включений, на что указывалось в [14]. Точный расчет в рамках феноменологической модели согласуется с этими качественными соображениями и позволяет дать оценку этого эффекта [20]. Во-вторых, наличие на границе раздела фаз двойных электрических слоев и взаимодействие с ними сегнетоэлектрических включений также может приводить к повышению температуры фазового перехода T_C [20,21].

Существенную роль может играть и еще один механизм повышения Т_С, обусловленный различием коэффициентов теплового расширения материалов, находящихся в контакте. Для оценки данного эффекта решим плоскую упругую задачу. Пусть *а* — радиус цилиндрической поры, которая заполняется сегнетоэлектриком, *b* — период пористой структуры. Тогда цилиндр радиуса b можно рассматривать как представительскую ячейку периодичности этой композиционной структуры, а цилиндрический слой ширины b-a, прилегающий к внешней границе цилиндра, соответствует диэлектрической матрице Al₂O₃ (рис. 1). При повышении температуры на величину ΔT и сегнетоэлектрическое включение, и матрица Al₂O₃ будут пластически деформироваться вследствие теплового расширения. Величина этой пластической деформации $u_T = \alpha \Delta T$ (где α коэффициент теплового расширения) неодинакова для сегнетоэлектрика и для матрицы в силу различия их коэффициентов теплового расширения α_1 и α_2 . Это приводит к возникновению напряженного состояния в образце. Давление $p = -(1/3)\sigma_{ll}$, где σ_{ll} — след тензора напряжения [22], как функция точки образца может быть найдено из решения уравнения

$$p = \frac{E}{3(1-v)} \left[u_T \right] \delta'(r-a), \tag{2}$$

которое следует из уравнений Бельтрами-Митчелла (см., например, [23]). Здесь квадратными скобками обозначен скачок пластической деформации на границе двух сред $[u_T] = \Delta a \Delta T = (\alpha_2 - \alpha_1) \Delta T$, E — модуль Юнга, v — коэффициент Пуассона, δ' — производная функции Дирака. Различием упругих модулей матрицы и сегнетоэлектрического включения пренебрегаем во избежание неоправданно громоздких выкладок, поскольку такой учет не может изменить порядок величины обсуждаемого эффекта. Решение уравнения (2) должно удовлетворять граничным условиям: функция p(r) должна быть ограниченной при $r \rightarrow 0$; при r = b пластическая деформация, обусловленная изменением температуры, должна в точности компенсироваться упругой деформацией, вследствие чего

$$p(r = b) = p_0 = K u_T = \frac{E}{3(1 - v)} \alpha_2 \Delta T.$$
 (3)

Здесь K = E/3(1 - v) — модуль всестороннего сжатия [22].

Решение уравнения (2), удовлетворяющее указанным граничным условиям, имеет вид

$$p = \begin{cases} -\frac{E}{3(1-v)} [u_T] \Delta T + p_0 \frac{\ln a}{\ln b}, & \text{если } 0 < r < a, \\ p_0 \frac{\ln r}{\ln b}, & \text{если } a < r < b. \end{cases}$$
(4)

Согласно (4), сегнетоэлектрическое включение будет находиться в однородно напряженном состоянии. Это

должно в соответствии с эмпирическим законом [24]

$$T_C = T_C^0 + \gamma \cdot p, \tag{5}$$

где γ — константа материала, привести к изменению температуры фазового перехода ΔT_C ($\Delta T_C = \gamma \cdot p$). Если для численных оценок использовать известные значения параметров [25]: для сегнетовой соли $\gamma = 2.6 \cdot 10^{-8}$ K/Pa, $\alpha_1 = 40 \cdot 10^{-6}$ K⁻¹ и для Al₂O₃ $\alpha_2 = 6 \cdot 10^{-6}$ K⁻¹, $E = 3.8 \cdot 10^{11}$ Pa, v = 0.3 и сделать предположение о том, что ненапряженное состояние композита соответствует температуре $T = 20^{\circ}$ С, получим $\Delta T_C = 0.9^{\circ}$.

Для кристаллов ТГС этот эффект будет иметь место, если заполнение пор в матрице проводить при температурах $T > T_C$, а затем охлаждать материал до перехода включения ТГС в сегнетоэлектрическое состояние. Причина этого заключается в том, что главные значения тензора коэффициентов теплового расширения имеют разные знаки [25], и в среднем кристаллы ТГС при нагревании сжимаются быстрее, чем расширяется матрица.

4. Заключение

Полученные в работе экспериментальные результаты выявили влияние "ограниченной геометрии" на фазовые превращения ТГС и его аналогов, внедренных в пористые матрицы Al и Si. Обнаружено повышение температуры T_C , приводящее к расширению сегнетоэлектрической фазы в сторону более высоких температур.

По зависимостям G(T) рассчитаны значения энергии активации W для изучаемых композитов, которые коррелируют со значениями W для объемного ТГС. Показано, что перенос заряда в изучаемых композитах осуществляется преимущественно через внедренный сегнетоэлектрик.

Показано, что различие коэффициентов теплового расширения пористой матрицы и сегнетоэлектрического включения может приводить к смещению температуры фазового перехода T_C сегнетокомпоненты в сторону более высоких температур.

Список литературы

- [1] H.S. Min, J.K. Lee. Ferroelectrics 336, 231 (2006).
- [2] K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Golsele. Nano Lett. **2**, *7*, 677 (2002).
- [3] J.F. Scott, M. Dawber, A.Q. Jiang, F.D. Morrison. Ferrotlectrics 286, 223 (2003).
- [4] O.M. Zhigalina, E.D. Mishina, N.E. Sherstyuk, K.A. Vorotilov, V.A. Vasiljev, A.S. Sigov, O.I. Lebedev, Yu.V. Grigoriev, M.P. De Santo, R. Barberi, Th. Rasing. Ferroelectrics 336, 247 (2006).
- [5] D. Jadlovker, S. Berger. Ferroelectrics 336, 219 (2006).
- [6] Э.П. Домашевская, В.А. Терехов, В.М. Кашкаров, Э.Ю. Мануковский, С.Ю. Турищев, С.Л. Молодцов, Д.В. Вялых, А.Ф. Хохлов, А.И. Машин, В.Г. Шенгуров, С.П. Светлов, В.Ю. Чалков. ФТТ 46, 335 (2004).

- [7] О.М. Голицына, С.Н. Дрождин, А.Е. Гриднев, В.В. Чернышев, И.Е. Занин. Изв. РАН. Сер. физ. 74, 9, 1347 (2010).
- [8] М. Лайнс, А. Гласс. Сегнетоэлектрики и родственные им материалы. Пер. с англ. Мир, М. (1981). 736 с.
- [9] О.В. Рогазинская, С.Д. Миловидова, А.С. Сидоркин, В.В. Чернышев, Н.Г. Бабичева. ФТТ **51**, *7*, 1430 (2009).
- [10] С.В. Барышников, Е.В. Чарная, Е.В. Стукова, А.Ю. Милинский, Cheng Tien. ФТТ 52, 7, 1347 (2010).
- [11] И.С. Желудев. Основы сегнетоэлектричества. Атомиздат, М. (1973). 472 с.
- [12] О.А. Караева, Л.Н. Коротков, А.А. Набережнов, Е. Rysiakiewicz-Pasek. ФТТ 51, 7, 1304 (2009).
- [13] А.В. Шильников, Л.А. Шувалов, В.А. Федорихин, А.П. Поздняков, А.В. Сопит. ФТТ 41, 6, 1073 (1999).
- [14] А.Л. Пирозерский, Е.В. Чарная, Cheng Tien. ФТТ **49**, *2*, 327 (2007).
- [15] М.С. Цедрик. Физические свойства кристаллов семейства триглицинсульфата. Наука и техника, Минск (1986). 216 с.
- [16] W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu. Phys. Rev. B 50, 698 (1994).
- [17] Zh. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Yohnsson, P. Nanni. Phys. Rev. B 70, 024 107 (2004).
- [18] E. Rysiakiewicz-Pasek, R. Poprawski, J. Polanska, A. Sieradzki, E.B. Radojewska. J. Non-cryst. Solids 351, 2703 (2005).
- [19] C.B. Барышников, Ε.B. Стукова, Ε.B. Чарная, Cheng Tien, M.K. Lee, W. Bohlmann, D. Michel. ΦΤΤ 48, 3, 551 (2006).
- [20] В.Н. Нечаев, А.В. Висковатых. Изв. АН. Сер. физ. 74, 9, 1273 (2010).
- [21] Л.М. Блинов, В.М. Фридкин, С.П. Палто, А.В. Буне, П.А. Даубен, С. Дюшарм. УФН 170, 3, 247 (2000).
- [22] Л.Д. Ландау, Е.М. Лифшиц. Теория упругости. Физматлит, М. (2003). 264 с.
- [23] В.Н. Нечаев, А.М. Рощупкин. ФТТ 31, 8, 77 (1989).
- [24] Ф. Иона, Д. Ширане. Сегнетоэлектрические кристаллы. Мир, М. (1965). 556 с.
- [25] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.