Исследование процессов ионизации кластеров Ar_n , $(H_2O)_n$, $Ar_n(H_2O)_m$ электронным ударом

© М.А. Ходорковский,¹ Т.О. Артамонова,¹ С.В. Мурашов,² D. Michael,³ Л.П. Ракчеева,¹ А.А. Беляева,¹ Н.А. Тимофеев,² А.С. Мельников,² А.Л. Шахмин,¹ И.А. Дементьев²

1 Российский научный центр "Прикладная химия",

² Санкт-Петербургский государственный университет,

198904 Санкт-Петербург, Россия

³ General Electric Global Research Center, Niskayuna,

12309, New York USA

02

e-mail: mkhodorkovskii@rscac.spb.ru

(Поступило в Редакцию 29 октября 2007 г.)

Измерены зависимости интенсивности ионов, формирующихся в смеси аргона с парами воды в сверхзвуковом молекулярном пучке, от энергии возбуждающих электронов в области до 120 eV. Впервые измерены пороги появления кластеров $(H_2O)_{n-1}H^+$, $Ar_n(H_2O)_m^+$ электронным ударом. Установлено, что энергия связи протона с гидроксильной группой существенно понижается как при переходе молекул воды в кластеры, так и в случае образования смешанных кластеров $Ar_n(H_2O)_m$.

PACS: 36.40.-c, 34.80.Gs

Введение

В нашей работе [1] был исследован состав сверхзвукового молекулярного пучка (СМП) смеси аргона и паров воды методом масс-спектрометрии. Было показано, что состав пучка зависит не только от газодинамических параметров пучка и парциального давления компонент исходной смеси, но также от способа приготовления этой смеси. При определенных условиях смешения аргона и паров воды можно сформировать пучок с большим или меньшим содержанием кластеров воды или кластеров аргона и смешанных кластеров. Наиболее удивительный результат, полученный в работе [1], заключается в том, что увеличение концентрации кластеров воды в молекулярном пучке может быть достигнуто как увеличением парциального давления водяных паров в исходной смеси, так и путем напуска аргона в камеру, содержащую водяной пар. В случае напуска водяного пара в камеру с аргоном концентрации водных кластеров уменьшалась, а смешанных кластеров, таких как $Ar_n(H_2O)_m$, увеличивалась.

Изучение зависимости состава пучка от способа приготовления смеси было обусловлено результатами исследований плазменного разряда в смеси аргона с парами воды [2–4]. В этих работах было показано, что интенсивность излучения радикалов ОН (306.4 nm) зависит от концентрации паров воды в исходной смеси и способа приготовления смеси. Например, можно так приготовить рабочую смесь, что излучение разряда будет в основном определяться очень интенсивной линией ОН 306.4 nm, а линии аргона будут слабыми [3]. В связи с этим представляет интерес изучение процессов ионизации при столкновении электронов с компонентами рабочей смеси. Результаты взаимодействия электронов с атомами инертных газов и молекулами воды хорошо известны [5], а данных о взаимодействии электронов с их кластерами в известной нам литературе очень мало.

Целью настоящей работы является исследование процессов ионизации электронным ударом кластеров аргона Ar_n , воды $(H_2O)_m$ и смешанных кластеров $Ar_n(H_2O)_m$, формирующихся в смеси аргона с парами воды в сверхзвуковом молекулярном пучке.

Экспериментальная установка

В работе использовалась экспериментальная установка со сверхзвуковым импульсным молекулярным пучком, описанная в работе [1]. Для формирования и регистрации сверхзвукового молекулярного пучка использовались три камеры. Газовая смесь паров воды и аргона с предельным давлением 10 bar готовилась различными способами в первой камере и затем подавалась через сверхзвуковое импульсное сопло во вторую камеру, откачанную до давления 10^{-8} Torr. Длительность импульса молекулярного пучка составляла 0.2-10 ms. Далее молекулярный пучок через скиммер попадал в следующую камеру, оборудованную квадрупольным масс-спектрометром фирмы Balzers (Швейцария), имеющим область регистрации масс до 2000 и и в разрушающую способность по массам ~ 500. Погрешность при измерении значений ионных сигналов составляет примерно 5%.

В зоне пересечения молекулярного и электронного пучков в ионизационной головке квадрупольного массспектрометра формировались ионы исходных частиц (прямые ионы) и ионы, образующиеся в результате диссоциативной ионизации (фрагментные ионы). Плотность потока электронов при токе электронной пушки 10 µA и напряжении 50 eV составляет примерно 10⁷ cm⁻³.

¹⁹⁷¹⁹⁸ Санкт-Петербург, Россия

Порядок величины сечений ионизации атомов и молекул при электронном ударе не превышает 10^{-16} cm². Можно утверждать, что после столкновения частиц молекулярного пучка с электронами дополнительные столкновения между частицами пучка отсутствуют.

В условиях сверхзвукового молекулярного пучка концентрация частиц не превышает 10^{11} cm⁻³, газовая температура составляет 10-20 К. Время пролета частиц через установку (от сопла до детектора) не превышает $100 \,\mu$ s. Время между столкновениями частиц в данных условиях не менее 10 ms. Таким образом, в условиях настоящей работы реализуется случай однократных столкновений частиц в пучке.

При установке масс-спектрометра в режим регистрации выбранной массы проводилось измерение временной зависимости интенсивности ионного сигнала (Т-формы). Как было показано ранее [1], с помощью Т-формы ионного сигнала в случае фрагментного иона можно судить о том, какая материнская молекула является исходной для наблюдаемого фрагмента. Для измерения временных зависимостей использовался аналого-цифровой преобразователь (АЦП) с временным разрешением 25 ns в режиме накопления. Измерения зависимости интенсивности ионных сигналов от энергии возбуждающих электронов проводились в диапазоне энергий 10-120 eV с шагом изменения энергии электронов 0.5 eV. Для определения порогов появления прямых и фрагментных ионов проводились измерения ионных сигналов в диапазоне припороговых энергий с большим временем накопления и последующей экстраполяцией получаемых значений.

Результаты и их обсуждение

Процессы ионизации комплексов аргона

На рис. 1 представлены зависимости интенсивностей ионов Ar_n^+ (m = 1-4) от энергии возбуждающих электронов в области до 120 eV. Как видно из этого рисунка, по мере увеличения размера кластера вид зависимостей заметно изменяется. В области 30-40 eV по мере роста n появляется достаточно узкий максимум, энергетическое положение которого смещается в область меньших энергий, а его ширина уменьшается.

Для корректного описания полученных результатов следует иметь в виду, что атомы аргона и малые кластеры могут попадать в зону регистрации не только непосредственно из смеси, но также за счет испарения их с больших кластеров за время движения последних в ионизационную головку масс-спектрометра. В таком случае вклад в измеряемый сигнал дают как исходные ионы, так и фрагментные ионы, получаемые в результате диссоциативной ионизации кластеров больших размеров, т. е.

$$(\operatorname{Ar})_n + e = (\operatorname{Ar})_n^+ + 2e, \qquad (1)$$

$$(Ar)_k + e = (Ar)_n^+ + (Ar)_{k-n} + 2e$$
 (для всех $k > n$). (2)

Рис. 1. Зависимости интенсивности ионов Ar_n^+ (n = 1-4), образовавшихся в сверхзвуковом молекулярном пучке, от энергии возбуждающих электронов. Кривые нормированы на единицу в максимуме $I - Ar^+$, $2 - Ar_2^+$, $3 - Ar_3^7$, $4 - Ar_4^+$.

Так как вклад фрагментных ионов в измеряемый сигнал зависит от сечения диссоциативной ионизации и количества кластеров большего размера, естественно ожидать изменения энергетической зависимости интенсивности ионов $\operatorname{Ar}_n^+(n=1-k)$ от степени кластеризации молекулярного пучка.

На рис. 2 приведены зависимости интенсивности ионов Ar^+ , образовавшихся в сверхзвуковом молекулярном пучке с различным содержанием кластеров аргона, от энергии возбуждающих электронов. Для пучка, состоящего только из атомов аргона, приведена зависимость полного сечения ионизации Ar от энергии ударяющих электронов [5]. Все кривые нормированы на единицу при 90 eV, поскольку сечение ионизации Ar имеет максимум при этом значении энергии [5]. Как видно из рис. 2, на кривых энергетических зависимостей интенсивностей ионов Ar⁺, образовавшихся в сверхзвуковом кластиро-

Рис. 2. Зависимости интенсивности ионов Ar^+ , образовавшихся в сверхзвуковом молекулярном пучке, от энергии возбуждающих электронов. Кривая I — пучок содержит большие кластеры аргона, 2 — пучок содержит малые кластеры аргона, 3 — пучок состоит только из атомов аргона [5]. Кривые нормированы на единицу при 90 eV.

Журнал технической физики, 2009, том 79, вып. 1

Рис. 3. Зависимости интенсивности ионов $Ar^+(I)$, $Ar^{2+}(2)$, $Ar^{3+}(3)$, образовавшихся в сверхзвуковом молекулярном пучке с большим содержанием кластеров, от энергии возбуждающих электронов. Кривые нормированы на единицу в максимуме.

ванном молекулярном пучке, наблюдается максимум в области энергий 30–50 eV, тогда как для пучка, содержащего только атомы аргона, кривая таких особенностей не имеет. Наличие максимума в области низких энергий свидетельствует о том, что вклад диссоциативной ионизации кластеров в измеряемую интенсивность Ar^+ весьма заметен. По энергетическому положению этот максимум близок к максимуму, наблюдающемуся для Ar_n^+ (см. рис. 1).

Интересно отметить, что на аналогичных кривых для Ar^{2+} (рис. 3) не наблюдается того характерного максимума в области малых энергий электронов, который так ярко выражен для ионов однократной ионизации Ar^+ . По-видимому, процесс диссоциативной ионизации кластеров аргона с образованием ионов Ar^{2+} маловероятен в связи с возможностью переноса заряда внутри кластера.

В настоящей работе были измерены пороги появления ионов атомов и малых кластеров аргона, их значения приведены в табл. 1. Как видно из таблицы, пороги появления этих ионов практически совпадают друг с другом. Порог появления ионов Ar^+ в пределах погрешности эксперимента совпадат с потенциалом ионизации атомов аргона 15.76 eV [5], а пороги появления ионов Ar_2^+ , Ar_3^+ хорошо совпадают с измеренными ранее в работе [4].

Таблица 1. Пороги появления ионов Ar⁺, Ar⁺₂, Ar⁺₃ в сверхзвуковом молекулярном пучке

Ион	E, eV		
	Настоящая работа	[4]	
$\begin{array}{c} Ar^+ \\ Ar_2^+ \\ Ar_3^+ \end{array}$	$\begin{array}{c} 16.0 \pm 0.5 \\ 16.2 \pm 0.3 \\ 16.2 \pm 0.3 \end{array}$	$\begin{array}{c} 16.0 \pm 0.3 \\ 16.2 \pm 0.3 \\ 16.4 \pm 0.3 \end{array}$	

Процессы ионизации кластеров молекул воды (H₂O)_n

Зависимости интенсивностей ионов молекул воды, их фрагментов, а также кластеров воды, измеренные для случая сильно кластированного молекулярного пучка, от энергии возбуждающих электронов приведены на рис. 4. На рис. 4, *а* кроме измеренных энергетических зависимостей интенсивностей H_2O^+ и OH^+ приведены зависимости парциальных сечений ионизации молекул H_2O электронным ударом с образованием H_2O^+ и OH^+ [5]. Видно, что зависимости интенсивностей H_2O^+ и OH^+ [5]. Видно, что зависимости интенсивностей H_2O^+ от энергии возбуждающих электронов в случаях кластированного и мономолекулярного пучков практически совпадают, тогда как для ионов OH^+ наблюдается небольшое различие.

На рис. 4, *b* приведены зависимости интенсивностей протонированных ионов $(H_2O)_{n-1}H^+$, образующихся в результате диссоциативной ионизации кластеров воды, от энергии возбуждающих электронов. Как показано в работе [1], интенсивность протонированных ионов кластеров воды $(H_2O)_{n-1}H^+$ как минимум на порядок

Рис. 4. Зависимости интенсивности ионов H_2O^+ , OH^+ , $(H_2O)_nH^+$ (n = 1-5), образовавшихся в сверхзвуковом молекулярном пучке, от энергии возбуждающих электронов. Для сравнения приведены зависимости парциальных сечений ионизации H_2O электронным ударом с образованием H_2O^+ и OH^+ (stand.) [5]. Кривые нормированы на единицу в максимуме.

5

превышает интенсивность материнских молекулярных ионов $(H_2O)_2^+$. Хорошо известно [6–9], что при взаимодействии кластеров воды с электронами вследствие быстрой внутримолекулярной перестройки иона $(H_2O)_n^+$ процесс отрыва OH-радикала с переносом заряда весьма эффективен, и как следствие в эксперименте регистрируются в основном протонированные ионы, т.е.

$$(H_2O)_n + e \to (H_2O)_n^+ + 2e \to [(H_2O)_{n-1}]H^+ \dots$$

... $OH + 2e \to [(H_2O)_{n-1}]H^+ + OH + 2e.$ (3)

Для анализа полученных данных следует рассмотреть некоторые возможные каналы реакций образования положительных ионов при взаимодействии электронов с молекулами и кластерами воды

 $H_2O + e = H_2O^+ + 2e,$ (4)

$$H_2O + e = H^+ + OH + 2e,$$
 (5)

$$H_2O + e = H^+ + OH^- + e,$$
 (6)

$$\mathbf{H}_2\mathbf{O} + e = \mathbf{O}\mathbf{H}^+ + \mathbf{H} + 2e, \tag{7}$$

$$H_2O + e = OH^+ + H^- + e,$$
 (8)

$$(H_2O)_n + e = (H_2O)_n^+ + 2e,$$
 (9)

$$(H_2O)_n + e = (H_2O)^+ + (H_2O)_{n-1} + 2e,$$
 (10)

$$(H_2O)_n + e = (H_2O)_{n-1}H^+ + OH + 2e,$$
 (11)

$$(H_2O)_n + e = (H_2O)_{n-1}H^+ + OH^- + e,$$
 (12)

$$(H_2O)_n + e = (H_2O)_{n-1}H + OH^+ + 2e,$$
 (13)

$$(H_2O)_n + e = (H_2O)_{n-1}H^- + OH^+ + e,$$
 (14)

$$(H_2O)_n + e = (H_2O)_{n-1}OH + H^+ + 2e,$$
 (15)

$$(H_2O)_n + e = (H_2O)_{n-1}OH^- + H^+ + e,$$
 (16)

$$(H_2O)_n + e = (H_2O)_kH^+ + (H_2O)_{n-k-1}OH + 2e,$$
 (17)

$$(H_2O)_n + e = (H_2O)_kH^+ + (H_2O)_{n-k-1}OH^- + e$$
, (18)

где в выражениях (17), (18) k может принимать значения от 1 до n - 2.

Как видно из приведенных выражений, при измерении интенсивностей сигналов положительных ионов H_2O^+ , OH^+ и H^+ необходимо учитывать, что они могут быть образованы как в результате прямой ионизации (4)–(8), так и диссоциативной ионизации кластеров (10), (13)–(16). В связи с этим необходимо сравнить *T*-формы измеряемых сигналов для ионов с определенной массой для последующего отнесения их к той или иной родительской частице.

На рис. 5 приведены *T*-формы для ионов H_2O^+ , OH^+ и H^+ в молекулярном пучке с большим содержанием кластеров воды. Вид *T*-форм для этих ионов практически совпадает друг с другом. Как было показано ранее [1], в этом случае ионы H_2O^+ , OH^+ и H^+ формируются при соударении электронов с нейтральными молекулами воды в реакциях (4)–(8), а упоминавшееся выше

Рис. 5. Временные зависимости интенсивности ионов $H_2O^+(1)$, $OH^+(2)$ и $H^+(3)$, образовавшихся в сверхзвуковом молекулярном пучке с большим содержанием кластеров воды электронным ударом. Кривые нормированы на единицу в максимуме.

небольшое различие в энергетических зависимостях интенсивности ионов ОН⁺ для кластированного и мономолекулярного пучков может свидетельствовать о дополнительном вкладе в интенсивность от диссоциативной ионизации кластеров воды — реакции (13), (14).

В табл. 2 приведены пороги появления ионов молекул воды, кластеров воды и их фрагментов, измеренные в настоящей работе и известные из литературы. Насколько нам известно, эксперименальные данные о порогах появления ионов кластеров воды, кроме димера (H₂O)₂, в литературе отсутствуют. Пороги появления ионов (H₂O)₂⁺ и протонированных ионов (H₂O)H⁺ были измерены в работе [10] методом фотоионизации, а в работе [11] были рассчитаны первые вертикальные энергии ионизации кластеров (H₂O)_n для n = 1-8.

Измеренные в настоящей работе пороги появления ионов H_2O^+ , OH^+ , H^+ и $(H_2O)H^+$ отличаются от литературных значений [5,12] в среднем на $\Delta \approx 3 \, \text{eV}$. Такую значительную разницу можно объяснить экспериментальной особенностью регистрации сигнала в случае молекулярного пучка, обогащенного парами воды. По-видимому, в этом случае водный слой покрывает регистрирующие поверхности ионизационной головки квадрупольного масс-спектрометра и создает дополнительное паразитное сопротивление. Можно считать, что истинные значения порогов появления всех ионов примерно на $\Delta \approx 3 \, \text{eV}$ меньше измеренных. В табл. 2 приведены значения порогов появления ионов с учетом этой систематической ошибки. Из таблицы видно, что потенциал ионизации димера воды $(H_2O)_2^+$, измеренный в [10], на 0.67 eV отличается от рассчитанного в [11] и только на 0.5 eV — от порога появления протонированного иона (H₂O)H⁺ [10]. На этом основа-

Материнская молекула	Ион	Порог появления, eV (настоящая работа)	Порог появления, eV [5,10–12]
H_2O	$\begin{array}{c} H_2O^+\\ OH^+\\ H^+ \end{array}$	12 ± 0.5 18 ± 0.5 19.5 ± 0.5	$\begin{array}{c} 12.61 \ [5] \\ 18.34^{*} \ [12] \\ 18.76^{*} \ [12] \end{array}$
$(H_2O)_2$	$(H_2O)_2^+$ $(H_2O)H^+$	- 12 + 0.5	$\begin{array}{c} 11.21 \pm 0.09 [10] \\ 11.88 [11] \\ 11.73 \pm 0.03 [10] \end{array}$
$({\rm H_{2}O})_{3}$	$(H_2O)_3^+$		a 11.93** b 10.45**
$(H_2O)_4$	$({ m H_2O})_2{ m H^+} \ ({ m H_2O})_4^+$	12 ± 0.5	a 11.55** [11] b 10.62**
(HaO)r	$(H_2O)_3H^+$ $(H_2O)^+$	12 ± 0.5	a 11 31** [11]
(1120)5	$({\rm H}_2{\rm O})_5$ $({\rm H}_2{\rm O})_4{\rm H}^+$	12 ± 0.5	<i>b</i> 11.24**
$(H_2O)_6$	$(\mathrm{H_2O})_6^+$		$a 11.40^{**}$ [11] $b 9.87^{**}$
	$(\mathrm{H_2O})_5\mathrm{H^+}$	12 ± 0.5	

Таблица 2. Пороги появления ионов молекул и кластеров воды и их фрагментов

* Пороги появления ионов H⁺ и OH⁺, рассчитанные по энергии диссоциации молекулы H₂O и энергии ионизации атома H и радикала OH соответственно.

** Расчет потенциалов ионизации для двух изомеров *a*, *b*.

нии можно предположить, что пороги появления ионов $(H_2O)_{n-1}H^+$ также незначительно будут отличаться от порогов появления ионов $(H_2O)_n^+$ ($n \ge 3$). Также видно, что пороги появления $(H_2O)_{n-1}H^+$, измеренные в настоящей работе, для всех n = 2-6 достаточно хорошо согласуются с расчетными значениями для *a*-изомера $(H_2O)_n^+$ [11].

Следует обратить внимание на тот факт, что при диссоциативной ионизации кластеров воды (реакция (11)) требуется затратить энергии на 7 eV меньше, чем при диссоциативной ионизации молекул H_2O (5). Полученный результат столь разных порогов появления протона и протонированного кластера свидетельствует о том, что энергия связи протона с гидроксильной группой существенно понижается при переходе молекул воды в кластеры.

Процессы ионизации смешанных кластеров Ar_n(H₂O)_m

На рис. 6 приведены зависимости интенсивности ионов Ar^+ , Ar_2^+ , ArH^+ , $ArOH^+$, ArH_2O^+ , $Ar_2(H_2O)^+$, $Ar_2(H_2O)H^+$, образовавшихся в сверхзвуковом молекулярном пучке электронным ударом, от энергии возбуждающих электронов. Как видно из этого рисунка, энергетическая зависимость интенсивности всех ионов, за исключением ArH^+ и Ar_2H^+ , близка по виду к энергетической зависимости интенсивности ионов Ar^+

и Ar₂⁺. На этом основании можно предположить, что для ионов ArOH⁺, ArH₂O⁺, Ar₂(H₂O)⁺, Ar₂(H₂O)H⁺ родительскими частицами являются смешанные кластеры, образованные путем прилипания молекул воды к атомам и димерам аргона, а не молекулы и димеры воды с адсорбированными на них атомами аргона. Последнее утверждение следует подчеркнуть, так как один и тот же комплекс, например Ar₂H₂O, может иметь различную структуру, а именно (Ar–Ar)–H₂O, где к димеру аргона присоединяется молекула воды, или Ar–H₂O–Ar, где атомы аргона будут связаны через молекулу воды. Электронное строение этих комплексов должно существенно отличаться друг от друга, что может приводить к различным сечениям их ионизации.

Приведенные соображения подтверждаются и видом *T*-форм, представленных на рис. 7. Наиболее контрастно это видно на рис. 7, *b*, где *T*-формы ионов $Ar_2H_2O^+$ и Ar_2H^+ близки к *T*-формам ионов димера и тримера аргона. Если бы образование материнских смешанных кластеров для этих ионов происходило за счет прилипания атомов аргона к молекулам воды, то их *T*-форма была бы скорее всего близка к *T*-форме ионов H_2O^+ (см. рис. 5), но, как видно из этих рисунков, *T*-формы ионов смешанных кластеров и их производных кардинально отличаются от *T*-форм молекул воды. *T*-формы ионов ArH_2O^+ и ArH^+ близки друг другу и следовательно, для фрагментного иона ArH^+ материнской молекулой можно считать молекул ArH_2O .

Рис. 6. Зависимости интенсивности ионов $Ar^+(1)$, $Ar_2^+(2)$, $ArH^+(3)$, $ArOH^+(4)$, $ArH_2O^+(5)$, $Ar_2(H_2O)^+(6)$, $Ar_2(H_2O)H^+(7)$, $Ar_2H^+(8)$, образовавшихся в сверхзвуковом молекулярном пучке, от энергии возбуждающих электронов. Кривые нормированы на единицу в максимуме.

В табл. З приведены пороги появления смешанных ионов, измеренные в настоящей работе с учетом систематической ошибки $\Delta \approx 3 \text{ eV}$ (см. пояснение к табл. 2). Как видно из табл. 2 и 3, при диссоциативной ионизации отрыв гидроксильной группы от смешанных кластеров (порог появления ArH^+ и $Ar(H_2O)H^+$) происходит при меньших энергиях электронов, чем отрыв OH от молекулы H_2O (порог появления H^+). Как и в случае водных кластеров, в случае смешанных кластеров гра-

Таблица 3. Пороги появления ионов смешанных кластеров

Ион	Порог появления иона <i>E</i> , eV
$\mathrm{Ar}(\mathrm{H_2O})^+$	13.5
ArH^+	< 15
$Ar(OH)^+$	< 15
$\mathrm{Ar}(\mathrm{H_2O})\mathrm{H^+}$	< 15
$\mathrm{Ar}_2(\mathrm{H}_2\mathrm{O})^+$	< 15.5
$\mathrm{Ar}_{2}\mathrm{H}^{+}$	< 16

Рис. 7. Временные зависимости интенсивности ионов $Ar^+(1)$, $Ar_2^+(2)$, $Ar_3^+(3)$, $H_2O^+(4)$, $ArH^+(5)$, $Ar_2H_+(6)$, $Ar_2H_2O^+(7)$, $Ar_2(H_2O)^+(8)$, $Ar(H_2O)H^+(9)$, образовавшихся в сверхзвуковом молекулярном пучке, от энергии возбуждающих электронов. Кривые нормированы на единицу в максимуме.

ница диссоциативной ионизации кластеров с отрывом ОН-радикалов понижается, хотя и в меньшей степени.

Заключение

Исследованы процессы взаимодействия электронов с компонентами сверхзвукового молекулярного пучка, молекул и кластеров воды, атомов и кластеров аргона, а также смешанных кластеров воды и аргона. Получены зависимости интенсивности ионов H_2O^+ , OH^+ , $(H_2O)_{n-1}H^+$, $Ar_n(H_2O)_m^+$ и их фрагментов от энергии возбуждающих электронов в области до 120 eV. Впервые были измерены потенциалы появления протонированных ионов из кластеров воды $(H_2O)_n$ и из смешанных кластеров $Ar_n(H_2O)_m$ электронным ударом. При этом установлено, что энергия связи протона с гидроксильной группой существенно понижается как при переходе молекул воды в кластеров $Ar_n(H_2O)_m$,

Совокупность полученных результатов позволяет сделать вывод о значительном влиянии различного вида кластеров на процессы ионизации в газовом разряде на смеси аргона с парами воды.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 06-02-17326, 08-02-00966).

Список литературы

- [1] Ходорковский М.А., Артамонова Т.О., Мурашов С.В. и др. // ЖТФ 2007. Т. 77. Вып. 10. С. 22–29.
- [2] Миленин В.М., Тимофеев Н.А., Ходорковский М.А. и др. // Письма в ЖТФ. 2000. Т. 26. Вып. 18. С. 63–67.
- [3] Вуль А.Я., Кидалов С.В., Ходорковский М.А. и др. // Письма в ЖТФ. 1999. Т. 25. Вып. 8. С. 62–64.
- [4] Zavilopulo A.N., Dolgin A.I., Khodorkovskii M.A. // Phys. Scripta. 1994. Vol. 50. P. 696–700.
- [5] Авакян С.В., Ильин Р.Н., Лавров В.М. и др. Сечения процессов ионизации и возбуждения УФ излучения при столкновениях электронов, ионов и фотонов с атомами и молекулами атмосферных газов. Справочник. СПб., 2000. 365 с.
- [6] Nagashima U, Shinohara H, Nishi N. et al. // J. Chem. Phys. 1986. Vol. 84. N 1. P. 209–213.
- [7] Huisken F., Kaloudis M., Kulcke A. // J. Chem. Phys. 1996. Vol. 104. N 1. P. 17–25.
- [8] Buck U, Winter M.Z. // Phys. D. 1994. Vol. 31. P. 291-297.
- [9] Shhinohara H., Nishi N., Washida N. // J. Chem. Phys. 1986. Vol. 84. N 10. P. 5561–5567.
- [10] Ng C.Y., Trevor D.J., Tiedeman P.W. et al. // J. Chem. Phys. 1977. Vol. 67. N 9. P. 4235–4237.
- [11] Tomoda S., Kimura K. // Chem. Phys. Lett. 1983. Vol. 102.
 N 6. P. 560–564.
- [12] Гурвич Л.В., Караченцев Г.В., Кондратьев В.Н. и др. Энергия разрыва химических связей. Потенциалы ионизации и сродство к электрону. М., 1974. 351 с.