05

ЭПР-исследования влияния парциального давления кислорода в атмосфере роста на концентрацию центров хрома в синтетическом форстерите

© Д.А. Ахметзянов¹, В.Б. Дудникова², Е.В. Жариков², Е.Р. Житейцев¹, О.Н. Зайцева², А.А. Коновалов¹, В.Ф. Тарасов¹

¹ Казанский физико-технический институт им. Е.К. Завойского Казанского научного центра РАН, Казань, Россия ² Институт общей физики им. А.М. Прохорова РАН,

Иоститут вощей физики им. А.М. Прохорова РАП, Москва, Россия E-mail: tarasov@kfti.knc.ru

(Поступила в Редакцию 3 сентября 2012 г.)

Методом многочастотной ЭПР-спектроскопии исследованы образцы синтетического форстерита, легированного хромом, выращенные в атмосфере аргона с различным содержанием кислорода (в диапазоне парциальных давлений кислорода от 0.03 до 0.78 kPa). Показано, как окислительные свойства атмосферы при выращивании кристаллов влияют на относительную концентрацию двух-, трех- и четырехвалентных ионов хрома в образцах. Обсуждается структура примесных центров трехвалентного хрома.

Работа поддержана Министерством образования и науки РФ (гос. контракт № 16.552.11.7008) и грантом HШ-5602.2012.2.

1. Введение

При выращивании лазерных кристаллов форстерита, легированного хромом, важной задачей является управление концентрацией примесных ионов Cr^{4+} или Cr^{3+} , на которых реализуется лазерная генерация в ИК-диапазоне [1,2]. В матрице форстерита одновременно могут присутствовать ионы Cr^{2+} , Cr^{3+} , Cr^{4+} [3–6] и, вероятно, Cr^{5+} и Cr^{6+} [7]. Для увеличения эффективности хромфорстеритовых лазеров, работающих на ионах Cr^{4+} , необходимо минимизировать концентрацию остальных ионов, так как линии поглощения и люминесценции для ионов хрома различной валентности частично перекрываются, вследствие чего эффективность лазерной генерации уменьшается.

Задача увеличения концентрации лазерно-активных ионов Cr^{4+} является достаточно сложной. Среди предлагаемых методов увеличения концентрации Cr^{4+} можно назвать увеличение начального содержания хрома в расплаве [7,8], выращивание кристалла в окислительной атмосфере [9,10], а также проведение отжига в окислительной атмосфере [8]. Однако вопрос об эффективности этих методов остается дискуссионным.

Влияние парциального давления кислорода на концентрацию ионов хрома разной валентности было изучено методом оптической спектроскопии в ряде работ [8,10,11], а также методом ЭПР-спектроскопии [9]. В работе [9] установлено, что значительное увеличение доли ионов Cr^{4+} в общей концентрации хрома происходит при переходе от низких содержаний кислорода, соответствующих 100% аргону, к атмосфере выращивания с содержанием 20% кислорода. В [10] этот интервал был исследован более детально, и установлено, что резкое увеличение концентрации ионов Cr^{4+} происходит при изменении парциального давления кислорода от 0.01 до 0.85 kPa. Дальнейшее увеличение P_{O_2} от 0.85 до 12 kPa концентрацию ионов Cr^{4+} практически не меняет, хотя доля их в общей концентрации хрома возрастает. При изменении концентрации кислорода от 0.01 до 12 kPa концентрация ионов Cr^{3+} , ответственных за полосу поглощения с $\lambda_{max} = 460$ nm, уменьшается примерно в 3 раза, при этом коэффициент распределения хрома между кристаллом и расплавом уменьшается примерно в 2 раза.

Достаточно эффективным, с точки зрения идентификации различных примесных центров хрома в форстерите, является метод ЭПР-спектроскопии. Этот метод дает информацию о величине спина иона хрома, которая однозначно связана с его зарядовым состоянием, а также информацию о симметрии кристаллического поля, действующего на примесный ион, что позволяет судить о положении примесного иона в кристаллической структуре.

В структуре форстерита ионы Cr^{2+} и Cr^{3+} замещают ионы Mg^{2+} , находящиеся в двух структурно неэквивалентных кислородных октаэдрах M1 и M2 с инверсионной C_i и зеркальной C_s симметриями соответственно [3,4]. Ионы Cr^{4+} замещают ионы Si^{4+} [12], которые в структуре форстерита находятся в кислородном тетраэдре с зеркальной симметрией C_s .

Для примесных ионов хрома в ромбической структуре форстерита основным электронным уровнем является орбитальный синглет. Спин-орбитальное взаимодействие во втором порядке теории возмущения и спинспиновое взаимодействие расщепляют основной орбитальный синглет на 2S + 1 спиновых подуровней, где S — величина электронного спина.

Рис. 1. Схема спиновых подуровней основного электронного синглета ионов $Cr^{2+}(a)$, $Cr^{3+}(b)$ и $Cr^{4+}(c)$. Пунктирными стрелками обозначены переходы, наблюдающиеся в ЭПР-спектроскопии *X*-диапазона, сплошными стрелками обозначены переходы в высокочастотном диапазоне.

Ионы Cr^{2+} , Cr^{3+} и Cr^{4+} имеют электронный спин S = 2, S = 3/2 и S = 1 соответственно. Схема спиновых подуровней для этих ионов показана на рис. 1.

Отметим, что для ионов хрома в форстерите, находящихся в позиции с локальной симметрией C_i , имеется четыре магнитно-неэквивалентных центра, и в спектрах ЭПР при произвольной ориентации магнитного поля относительно кристаллографических осей кристалла данным центрам соответствуют четыре линии. Для ионов хрома, находящихся в позиции с локальной симметрией C_s , имеются два магнитно-неэквивалентных центра и соответственно две линии в спектре ЭПР.

При направлении магнитного поля строго вдоль одной из кристаллографических осей для каждого из центров все линии, обязанные разным магнитно-неэквивалентным центрам, сливаются в одну.

2. Методика эксперимента и исследуемые образцы

Ионы Cr^{2+} изовалентно замещают Mg^{2+} в кристаллографических позициях M1 и M2. Спектры ЭПР центров Cr^{2+} измерялись на высокочастотном перестраиваемом ЭПР-спектрометре [13] в диапазоне частот 205–245 GHz при температуре образца 4.2 К. Внешнее

магнитное поле создавалось резистивным электромагнитом и изменялось в диапазоне — 0.03-1 T с прохождением через нулевое значение.

Идентификация ионов Cr^{2+} проводилась по характерным зависимостям резонансной частоты от магнитного поля. Из схемы подуровней на рис. 1, *а* следует, что для ионов двухвалентного хрома должна наблюдаться система из трех квазидублетов с начальными расщеплениями, приведенными в [4].

Определение относительной концентрации Cr²⁺ проводилось по спектрам, записанным на частоте около 220 GHz. Для устранения возможной ошибки, связанной с изменением чувствительности спектрометра из-за изменения мощности СВЧ-генератора и условий прохождения излучения через квазиоптический тракт при смене образца, перед исследуемым образцом помещался реперный образец флюорита, легированного диспрозием, и система из двух кристаллов помещалась в СВЧ-тракт спектрометра, собранного по безрезонаторной схеме. Относительная концентрация Cr²⁺ в исследуемых образцах определялась по отношению интегральных интенсивностей линий ЭПР Cr²⁺ и Dy³⁺ с учетом приведенных вероятностей переходов для разных центров и разных переходов ионов Cr²⁺. Интегральные интенсивности линий вычислялись двойным интегрированием сигналов ЭПР, соответствующих переходам 1 и 2 (рис. 1, *a*).

В исследованных нами кристаллах присутствуют несколько типов центров, образованных ионами Cr^{3+} и различающихся способом компенсации избыточного катионного заряда при гетеровалентном замещении. Это центры с нелокальной компенсацией заряда: одиночные ионы трехвалентного хрома в позициях M1 и M2, ассоциат трехвалентного хрома с магниевой вакансией $Cr^{3+}(M1)-V_{Mg}$ и центр с локальной компенсацией избыточного заряда, димер $Cr^{3+}-V_{Mg}-Cr^{3+}$, состоящий из двух трехвалентных ионов хрома и магниевой вакансии.

Измерение относительной концентрации димера $Cr^{3+}-V_{Mg}-Cr^{3+}$ в образцах проводилось на высокочастотном спектрометре в диапазоне частот 70–84 GHz по методике, описанной выше для двухвалентного хрома. Однако в качестве реперного образца использовался синтетический форстерит, легированный гольмием, и в качестве реперного сигнала использовались линии ЭПР иона Ho³⁺.

Измерение относительной концентрации одиночных ионов $\operatorname{Cr}^{3+}(M1)$ и $\operatorname{Cr}^{3+}(M2)$, ассоциата $\operatorname{Cr}^{3+}(M1)-V_{\mathrm{Mg}}$ и иона Cr^{4+} было проведено на спектрометре фирмы Varian E-12 в X-диапазоне при комнатной температуре. Внешнее магнитное поле изменялось в диапазоне 0-1.6 Т. Вращение образца осуществлялось одновременно в двух плоскостях, что позволяло выставлять образцы строго в одной ориентации — $B_0 \parallel b$. Идентификация примесных центров Cr^{3+} и Cr^{4+} осуществлялась по ориентационным зависимостям, рассчитанным с использованием известных [3,6,14] параметров эффективного спинового гамильтониана.

Таблица 1. Параметры условий роста и содержания хрома в исследованных образцах

Образец	Парциальное давление кис- лорода, kPa	Содержание хрома в шихте, wt.%	Содержание хрома в образце, wt.%
571_2	0.03	0.14	0.030(3)
571_3	0.09	0.14	0.030(3)
571_4	0.23	0.14	0.029(3)
571_5	0.78	0.14	0.024(3)

Относительные концентрации центров $\operatorname{Cr}^{3+}(M1)$ в исследуемых образцах оценивались по интегральной интенсивности перехода 1 (рис. 1, *b*), центров $\operatorname{Cr}^{3+}(M2)$ — по переходу 2 (рис. 1, *b*), центров $\operatorname{Cr}^{3+}(M1) - V_{\mathrm{Mg}}$ — по переходу 1 (рис. 1, *b*) и центров Cr^{4+} — по переходу 1 (рис. 1, *c*) с учетом приведенных вероятностей переходов.

Спектрометр Varian E-12 был снабжен двумя резонаторами, в один из которых помещался исследуемый образец форстерита, а во второй — реперный образец, уголек. Как и в случае ионов двухвалентного хрома, интегральные интенсивности переходов ионов трехвалентного хрома находились нормированием на линию реперного образца.

Мы оцениваем погрешность наших измерений интегральной интенсивности линий в спектрах ЭПР ±30%.

Образцы были выращены в Центре лазерных материалов и технологий ИОФ РАН методом Чохральского из иридиевых тиглей на затравки, вырезанные параллельно кристаллографической оси *a* в установке *Pbnm*. Скорость вытягивания кристалла составляла 1 mm/h, скорость вращения 12 rev/min. В качестве ростовой атмосферы использовался чистый аргон или аргон с добавлением кислорода. Парциальное давление кислорода измерялось анализатором АКПМ-1. В шихте концентрация хрома поддерживалась постоянной и составляла 0.14 wt.%. Исследованные образцы имели форму кубиков с длиной ребра 3 mm с гранями, перпендикулярными кристаллографическим осям.

Для кристаллов форстерита с хромом наблюдается явление плеохроизма: вдоль оси b кристаллы имеют синий цвет, вдоль оси a — зеленый и вдоль оси c — красный. Первоначальная ориентация образцов проводилась по ростовой огранке и естественному плеохроизму кристаллов. Ориентация уточнялась на рентгеновском дифрактометре ДРОН-4-13. Точность ориентации ребер образцов относительно кристаллографических осей была не хуже $1-2^{\circ}$.

Содержание хрома в кристаллах определялось с помощью рентгеноспектрального микроанализа, среднее значение концентрации для кристаллов являлось результатом 20 измерений. Параметры условий роста исследуемых образцов и данные по содержанию в них хрома представлены в табл. 1.

Для определения структуры примесно-вакансионных ассоциатов был выращен кристалл форстерита, легированный изотопом хрома 53 Cr в атмосфере аргона при P_{O_2} , равном 0.02 kPa.

3. Экспериментальные результаты

Данные об общем содержании хрома в исследованных кристаллах, помещенные в табл. 1, свидетельствуют о том, что в исследуемом диапазоне P_{O_2} значительных изменений в концентрации хрома не наблюдается. Содержание хрома в образцах 571_2–571_4 практически одинаково, можно говорить лишь о тенденции уменьшения ее в образце 571_5.

3.1. Ионы Cr²⁺. Ионы Cr²⁺ являются некрамерсовыми ионами и имеют достаточно большое расщепление электронных спиновых подуровней в нулевом магнитном поле. Для них в Х-диапазоне наблюдаются переходы между подуровнями ±2, но вероятность этих переходов крайне мала, так как они запрещены в соответствии с правилами отбора для магнитных дипольных переходов. Поэтому для измерения концентрации центров Cr²⁺ мы использовали высокочастотный ЭПР-спектрометр. Пример экспериментального спектра ионов Cr²⁺ показан на рис. 2. Цифры рядом с резонансными линиями соответствуют обозначениям переходов на рис. 1, а. Можно видеть, что для центра $Cr^{2+}(M1)$ в спектре наблюдаются два перехода. Ширина линии ЭПР для ионов Dy³⁺ в CaF2 была значительно больше, а амплитуда значительно меньше, чем для ионов Cr²⁺ в форстерите, поэтому сразу после записи общего спектра прописывался спектр ЭПР для ионов Dy³⁺ при большей амплитуде модуляции и большем коэффициенте усиления. Для уменьшения ошибки при нахождении интегральной интенсивности спектр Dy³⁺ прописывался несколько раз и усреднялся.

Рис. 2. Спектр ЭПР на частоте 220.5 GHz ионов Cr^{2+} в образце 571_3 при температуре 4.2 K, записанный при ориентации магнитного поля $B_0 \parallel b$, коэффициенте усиления 60 dB и напряжении на катушках модуляции магнитного поля 7 V. Вставка — спектр Dy^{3+} в реперном образце CaF₂, записанный при коэффициенте усиления 70 dB и напряжении модуляции 15 V.

Рис. 3. Зависимость относительной концентрации ионов $\operatorname{Cr}^{2+} - (a), \operatorname{Cr}^{3+} - (b)$ и $\operatorname{Cr}^{4+} - (c)$ от парциального давления кислорода в атмосфере роста.

В табл. 2 приведены значения нормированных на линию реперного образца интегральных интенсивностей линий 1 и 2 (рис. 1, *a*) для Cr^{2+} в позиции *M*1 и линии 1 (рис. 1, *a*) для Cr^{2+} в позиции *M*2 и приведенные вероятности переходов, рассчитанные в соответствии

Таблица 2. Значения нормированных на линию репера интегральных интенсивностей и приведенных вероятностей переходов ионов $\operatorname{Cr}^{2+}(M1)$ и $\operatorname{Cr}^{2+}(M2)$ (линии 1 и 2 соответствуют переходам на рис. 1, *a*)

Образец/переход	Сr ² (<i>M</i> 1) переход 2	Cr ²⁺ (<i>M</i> 2) переход 1	Cr ²⁺ (<i>M</i> 1) переход 1	
Вероятность перехода	8	5.5	8.25	
571_2	1.7704	0.6291	1.9273	
571_3	0.8220	0.2277	0.7533	
571_4	0.8949	0.3049	0.8739	
571_5	0.9027	0.2523	0.5805	

с [15] с учетом крутизны наклона зависимости частоты резонансного перехода от магнитного поля. На рис. 3, а представлена зависимость относительной концентрации ионов двухвалентного хрома в образцах от парциального давления кислорода в атмосфере роста. Как отмечено выше, для центра $Cr^{2+}(M1)$ наблюдается два перехода, и относительная концентрация данных центров в образцах определялась средним от интегральных интенсивностей двух переходов с учетом их вероятности. Видно, что в образцах 571_3-571_5 в пределах погрешности измерений не происходит изменения относительной концентрации ионов двухвалентного хрома, а в образце 571 2, который был выращен при парциальном давлении кислорода 0.03 kPa, относительная концентрация данных ионов в среднем в 2.5 раза выше. Таким образом, при изменении P_{O2} в диапазоне от 0.03 до 0.09 kPa наблюдается резкое уменьшение концентрации ионов Cr^{2+} , а затем концентрация стабилизируется.

3.2. И о ны Cr^{3+} . Принципиальная разница в структуре резонансных переходов, принадлежащих одиночному иону Cr^{3+} и димеру $Cr^{3+}-V_{Mg}-Cr^{3+}$, хорошо видна

Рис. 4. Зависимости частоты резонансных переходов от магнитного поля для различных центров трехвалентного хрома.

Таблица 3. Значения нормированных на линию репера интегральных интенсивностей и приведенных вероятностей переходов ионов $Cr^{2+}(M1)$ и $Cr^{2+}(M2)$ (соответствующие переходы отмечены на рис. 1, *b*), ассоциата $Cr^{3+}(M1)-V_{Mg}$ (соответствующий переход — рис. 1, *b*) и иона Cr^{4+} (рис. 1, *c*)

Образец/	Сг ³⁺ (<i>M</i> 1)	Cr ³⁺ (<i>M</i> 2)	Сг ³⁺ (<i>M</i> 1)- <i>V</i> _{Mg}	Сr ⁴⁺
переход	переход 1	переход 2	переход 1	переход 1
Вероятность перехода 571_2 571_3 571_4 571_5	9.2 8.21 7.30 10.80 9.21	32.0 11.31 13.15 11.81 14.05	8.8 7.11 10.41 9.59 9.00	3.0 5.40 29.02 32.64 16.30

на рис. 4, где представлены зависимости частоты резонансных переходов от магнитного поля, полученные на высокочастотном ЭПР-спектрометре. Видно, что наблюдаются два квартета переходов с разными начальными расщеплениями (HP). В соответствии со схемой переходов, представленной на рис. 1, *b*, такие квартеты характерны для одиночных ионов Cr^{3+} .

Кроме этого нами наблюдалось большое количество переходов между синглетными подуровнями с величиной *HP* в диапазоне 70.7–80.6 GHz. Чтобы не загромождать рисунок, мы приводим только два наиболее интенсивных перехода. На рис. 4 для квартета переходов с начальными расщеплениями 66.6 и 72.9 GHz линии–аппроксимация экспериментальных данных прямыми линии–аппроксимации теоретическими зависимостями частоты ν от резонансного магнитного поля B_0 вида $\nu = \Delta \pm \sqrt{\delta^2 + (g\beta B_0)^2}$, где $\Delta = 75.65$ GHz и $\delta = 4.95$ GHz — параметры переходов, g — эффективный g-фактор, β — магнетон Бора, равный в единицах частоты 13.99 GHz/T.

Отметим, что при анализе спектров ЭПР, записанных на высокочастотном спектрометре, было установлено, что интегральные интенсивности линий переходов между синглетными подуровнями сравнимы с интегральными интенсивностями линий переходов одиночного иона $Cr^{3+}(M1)$.

Относительная концентрация центров $Cr^{3+}(M1)$, $Cr^{3+}(M2)$ и $Cr^{3+}(M1)-V_{Mg}$ в исследуемых образцах определялась по спектрам ЭПР, записанным в *X*диапазоне. На рис. 5, *а* представлены экспериментальные спектры ЭПР центров $Cr^{3+}(M1)$ и $Cr^{3+}(M1)-V_{Mg}$, на рис. 5, *b* — $Cr^{3+}(M2)$ в образце 571_3. Значения нормированных на линию репера интегральных интенсивностей и приведенных вероятностей переходов одиночных ионов Cr^{3+} в позиции *M*1 и *M*2 и ассоциатов $Cr^{3+}(M1)-V_{Mg}$ представлены в табл. 3.

На рис. 3, *b* представлена зависимость относительной концентрации ионов трехвалентного хрома в образцах от парциального давления кислорода в атмосфере роста. Стоит отметить, что в данный рисунок не включе-

на зависимость относительной концентрации димеров $Cr^{3+}-V_{Mg}-Cr^{3+}$, так как эксперименты по ее определению были проведены при других условиях. По нашим данным концентрация димеров в пределах погрешности измерений не зависит от P_{O_2} .

На рис. 3, b можно видеть, что концентрации центров $\operatorname{Cr}^{3+}(M1)$, $\operatorname{Cr}^{3+}(M2)$ и $\operatorname{Cr}^{3+}(M1) - V_{\mathrm{Mg}}$ в пределах

Рис. 5. Спектры ЭПР ионов хрома в *X*-диапазоне при комнатной температуре в образце 571_3: ионы $\operatorname{Cr}^{3+}(M1)$ и $\operatorname{Cr}^{3+}(M1)-V_{Mg}$ — (*a*), ионы $\operatorname{Cr}^{3+}(M2)$ — (*b*), ионы Cr^{4+} — (*c*). Цифры соответствуют переходам на рис. 1, *b* и 1, *c*.

погрешности измерений не меняются с изменением парциального давления кислорода в атмосфере роста.

Таким образом, в диапазоне парциальных давлений кислорода от 0.03 до 0.78 kPa значимых изменений концентрации трехвалентного хрома в образцах не происходит.

3.3. И о ны Cr^{4+} . Измерение относительной концентрации ионов Cr^{4+} проводилось по спектрам ЭПР в *X*диапазоне, на рис. 5, *c* представлен экспериментальный спектр ЭПР ионов Cr^{4+} в образце 571_3. Нормированные на линию репера интегральные интенсивности перехода 1 (рис. 1, *c*) ионов Cr^{4+} и приведенная вероятность данного перехода представлены в табл. 3.

Зависимость относительной концентрации ионов четырехвалентного хрома от парциального давления кислорода показана на рис. 3, *с*. Видно, что при изменении P_{O_2} от 0.03 (образец 571_2) до 0.09 kPa (образец 571_3) происходит резкое возрастание концентрации центров Cr^{4+} . Уменьшение концентрации центров Cr^{4+} в образце 571_5 мы связываем с пониженной общей концентрацией хрома (см. табл. 1).

4. Обсуждение

Ион Cr^{3+} имеет спин S = 3/2 и является крамерсовым ионом. По теореме Крамерса подуровни энергии такого иона в нулевом магнитном поле должны быть по крайней мере двукратно вырождены (рис. 1, *b*). Наличие у примесного центра Cr^{3+} синглетных подуровней, невырожденных в отсутствие магнитного поля, говорит о том, что данный центр характеризуется целочисленным суммарным спином, то есть является димером $Cr^{3+} - V_{Mg} - Cr^{3+}$.

Для проверки этого утверждения мы провели эксперименты с образцом форстерита, легированного изотопом ⁵³Cr, имеющим ненулевой ядерный спин I = 3/2. В этом случае сверхтонкое взаимодействие расщепляет электронные спиновые подуровни одиночного иона на 2I + 1 = 4 сверхтонких компонент, и спектр ЭПР такого иона имеет четыре разрешенных перехода. Для димера $Cr^{3+} - V_{Mg} - Cr^{3+}$, состоящего из двух примесных ионов, имеющих ненулевые ядерные спины, общее число сверхтонких подуровней для каждого электронного состояния равно $(2I + 1)^2 = 16$, и число разрешенных переходов между сверхтонкими подуровнями также равно 16. Однако не все переходы имеют разные значения резонансного магнитного поля. Часть переходов накладывается, и интенсивности отдельных компонент сверхтонкой структуры подчиняются биноминальному распределению [16]. Для димера $Cr^{3+} - V_{Mg} - Cr^{3+}$ сверх-тонкая структура должна состоять из 7 компонент с соотношением интенсивностей 1:2:3:4:3:2:1.

На рис. 6 показаны экспериментальные спектры одного из переходов между синглетными подуровнями с HP = 80.6 GHz. Образец был выставлен в произвольной ориентации, чтобы все четыре магнитнонеэквивалентных центра имели разные значения ре-

Рис. 6. Спектры ЭПР для перехода между синглетными подуровнями с начальным расщеплением 80.6 GHz, принадлежащие центру $\operatorname{Cr}^{3+}(M1) - V_{Mg} - \operatorname{Cr}^{3+}(M2)$. Линиями представлены теоретические зависимости частоты ν от резонансного магнитного поля B_0 .

зонансного магнитного поля. Как видно из рисунка, для каждого магнитно-неэквивалентного центра наблюдается семь переходов. Итак, данные исследования показывают, что в образце присутствуют димеры $Cr^{3+} - V_{Mg} - Cr^{3+}$.

Как указано выше, нами были оценены интегральные интенсивности переходов с *HP* 70.7 и 80.6 GHz, по которым мы можем судить об относительной концентрации данных центров. По спектрам в высокочастотном диапазоне было обнаружено, что интегральная интенсивность данных переходов одного порядка величины с интегральной интенсивностью линий одиночных ионов трехвалентного хрома $Cr^{3+}(M1)$. При строго статистическом распределении одинаковых примесных ионов по узлам решетки отношение концентраций димерных центров C_{dimer} и одиночных ионов C_{single} определяется соотношением [17]

$$C_{\text{single}}/C_{\text{dimer}} = 2c(1-c)^2, \qquad (1)$$

где c — общая мольная доля примесных ионов в кристалле по отношению к замещаемому ими основному компоненту матрицы. Примесные ионы хрома входят в разном валентном состоянии в различные кристаллографические позиции кристаллической решетки форстерита. Независимо от этого, при относительно небольших концентрациях ионов хрома в структуре форстерита (см. табл. 1) вероятность образования димеров ниже на четыре порядка, чем вероятность образования одиночных ионов. В нашем случае, очевидно, наблюдается самоорганизация примесных ионов в димеры, приводящая к существенному превышению концентрации димерных центров над уровнем, определяемым соотношением (1). Причина, по которой возникает самоорганизация димеров, связана с понижением энергии данного ассоциата в структуре форстерита по сравнению с двумя ионами хрома с нелокальной компенсацией заряда. Согласно результатам структурного компьютерного моделирования [18] энергия растворения трехвалентного хрома значительно меняется при изменении механизма зарядовой компенсации. Так, в случае изолированных дефектов энергия растворения в расчете на один ион хрома составляет половину от суммы энергий растворения 2Cr³⁺ и V_{Mg}. В этом случае, т.е. при нелокальной компенсации заряда, минимальная энергия растворения хрома составляет 1.97 eV [18]. При образовании заряженных ассоциатов Cr³⁺-V_{Mg}, компенсация заряда которых осуществляется изолированными от них ионами трехвалентного хрома, энергия растворения хрома представляет собой половину от суммы энергий растворения ассоциата $Cr^{3+}-V_{Mg}$ и изолированного иона Cr^{3+} и составляет 1.20 eV, а при полной локальной компенсации заряда в ассоциатах $Cr^{3+}-V_{Mg}-Cr^{3+}$ энергия растворения хрома в расчете на один ион составляет всего 0.67 eV. Присутствие отрицательно заряженной вакансии делает более вероятным сближение двух положительно заряженных ионов хрома.

Как обсуждалось выше, в структуре кристалла форстерита, легированного хромом, помимо центра $Cr^{3+}-V_{Mg}-Cr^{3+}$ образуется еще один сложный центр $Cr^{3+}-V_{Mg}$. На рис. 4 видно, что наблюдаются два квартета резонансных переходов с *HP* 66.6 и 72.9 GHz. Квартет с *HP* 66.6 GHz принадлежит простому центру: одиночному иону Cr^{3+} в позиции *M*1 [4]. Квартет с *HP* 72.9 GHz принадлежит сложному центру: ассоциату $Cr^{3+}-V_{Mg}$ [6,19,20].

Наличие магниевой вакансии вблизи одиночного иона Cr^{3+} не влияет на магнитные свойства иона хрома, но искажает кристаллическое поле, действующее на данный ион. Поэтому для такого ассоциата должен наблюдаться квартет резонансных переходов, как и для одиночного иона. Сверхтонкая структура спектров этого квартета, записанных для образца, легированного ⁵³Cr, состоит из четырех компонент, как и для одиночного иона. Это свидетельствует о том, что магнитные свойства данного центра аналогичны свойствам одиночного иона.

С другой стороны, сверхтонкая структура синглетных переходов свидетельствует о том, что эти переходы принадлежат димеру, состоящему из двух ионов трехвалентного хрома. Ранее было установлено, что ассоциат двух ионов Cr^{3+} в позиции M1 и магниевой вакансии между ними характеризуется другой структурой подуровней [5]. Вероятно, в исследованных нами образцах синглетные подуровни принадлежат димеру, образованному двумя ионами Cr^{3+} в разных кристаллографических позициях.

На рис. 3, *a*, 3, *b*, 3, *c* приведены графики зависимости относительных концентраций центров двух-, трех- и четырехвалентных ионов хрома от парциального давления кислорода в атмосфере роста.

Полученные результаты уточняют результаты работы [10], где с использованием данных оптической спек-

троскопии были исследованы зависимости концентрации центров $\rm Cr^{3+}$ и $\rm Cr^{4+}$ в форстерите в области изменения парциального давления кислорода от 0.01 до 12 kPa. В работе [10] было найдено, что в интервале $P_{\rm O_2}$ от 0.01 до 12 kPa происходит значительное уменьшение содержания трехвалентного хрома , в то время как в диапазоне $P_{\rm O_2}$ от 0.01 до 0.85 kPa экспериментальные точки отсутствовали.

Данные настоящей работы свидетельствуют о том, что в диапазоне P_{O_2} от 0.03 до 0.78 kPa не происходит заметных изменений концентрации трехвалентного хрома.

Что касается изменений в концентрации ионов четырехвалентного хрома, то настоящая работа показывает, что скачок содержания Cr^{4+} лежит в значительно более узком диапазоне, чем $0.01 < P_{O_2} < 0.85$ kPa [10], и происходит до достижения величины парциального давления кислорода 0.09 kPa.

Результаты наших измерений показывают, что небольшое присутствие кислорода в атмосфере при выращивании монокристаллов форстерита, легированного хромом, значительно влияет на концентрацию ионов двухи четырехвалентного хрома. Поскольку присутствие четырехвалентного хрома нехарактерно для силикатных расплавов, можно предположить, что образование ионов Cr⁴⁺ в кристаллах форстерита является результатом окисления более восстановленных форм. Вполне вероятно, что двухвалентный хром является источником, обеспечивающим формирование ионов четырехвалентного хрома. В работе [20] оценено примерное соотношение разновалентных форм хрома в кристаллах, выращенных в атмосфере чистого аргона ($P_{\rm O_2} \sim 0.01\,{\rm kPa}$). По этим данным, значительная часть хрома находится в двухвалентной форме — 46%, а четырехвалентный хром составляет около 5%. Если допустить, что в кристаллах, выращенных в аргоне при остаточном давлении кислорода 0.03 kPa, это соотношение сохраняется, то при общем содержании хрома в 0.03 wt.% в кристаллах должно быть $13.8 \cdot 10^{-3}$ wt.% ионов Cr^{2+} и $1.5 \cdot 10^{-3}$ wt.% ионов Cr^{4+} . При изменении P_{O2} от 0.03 до 0.09 kPa содержание ионов Cr⁴⁺, увеличившись примерно в 6 раз, может быть оценено как $9 \cdot 10^{-3}$ wt.%. Этот процесс сопровождается уменьшением содержания ионов Cr^{2+} до $5.5 \cdot 10^{-3}$ wt.% (в 2.5 раза). Таким образом, изменения концентрации центров Cr^{2+} и Cr^{4+} при изменении P_{O_2} от 0.03 до 0.09 составляют $8.3 \cdot 10^{-3}$ и $7.5 \cdot 10^{-3}$ соответственно, т.е. вполне сопоставимы, что соответствует высказанному выше предположению об участии ионов двухвалентного хрома в образовании ионов четырехвалентного.

Здесь следует подчеркнуть, что ион двухвалентного хрома, как и трехвалентного, в структуре форстерита находится в октаэдрической позиции, а ион четырехвалентного хрома в тетраэдрической.

В работе [8] было отмечено, что во время отжига при высокой температуре в форстерите может происходить диффузия хрома из одних позиций в другие. Авторами был установлен процесс окисления ионов Cr^{3+} до Cr^{4+} и диффузия последних в тетраэдрические позиции. Но этот процесс, как отмечается, очень малоэффективен.

В работе [10] предложена модель, согласно которой собственные дефекты кристалла форстерита, образующиеся в условиях относительного избытка кислорода, приводят к процессу самоокисления хрома. Наши измерения показывают, что, скорее всего, происходит процесс окисления ионов Cr^{2+} до Cr^{4+} , так как концентрация центров Cr^{3+} меняется мало. Возможно однако, что окисление ионов Cr^{2+} происходит в две стадии: сначала до трехвалентного состояния, а потом до Cr^{4+} . При этом в растущем кристалле должна происходить их диффузия из октаэдрических в тетраэдрические позиции, более энергетически выгодные для ионов Cr^{4+} .

5. Выводы

Исследовано влияние окислительного потенциала атмосферы в диапазоне $0.03 < P_{O_2} < 0.78$ kPa при выращивании монокристаллов синтетического форстерита на содержание ионов хрома в разных зарядовых состояниях. Установлено, что содержание четырехвалентного хрома увеличивается почти в 6 раз при увеличении P_{O_2} от 0.03 до 0.09 kPa. При этом концентрация двухвалентного хрома уменьшается примерно в 2.5 раза.

Поскольку содержание трехвалентного хрома по данным ЭПР не уменьшается, можно сделать вывод о том, что увеличение концентрации четырехвалентного хрома происходит за счет окисления двухвалентного хрома.

Список литературы

- V. Petricevic, S.K. Gayen, R.R. Alfano. Appl. Phys. Lett. 53, 26, 2590 (1988).
- [2] А.В. Гайстер, Е.В. Жариков, В.Ф. Лебедев, А.С. Подставкин, С.Ю. Теняков, А.В. Шестаков, И.А. Щербаков. Квантовая электрон. 34, 8, 693 (2004).
- [3] H. Rager. Phys. Chem. Minerals 1, 371 (1977).
- [4] В.Ф. Тарасов, Г.С. Шакуров, А.Н. Гавриленко. ФТТ **37**, *2*, 499 (1995).
- [5] G.S. Shakurov, V.F. Tarasov. Appl. Magn. Res. 21, 597 (2001).
- [6] I.D. Ryabov. Phys. Chem. Minerals 38, 3, 177 (2010).
- [7] W. Chen, G. Boulon. Opt. Mater. 24, 163 (2003).
- [8] Y. Yamaguchi, K. Yamagishi, Y. Nobe. J. Cryst. Growth 128, 996 (1993).
- [9] J.L. Mass, J.M. Burlitch, S.A. Markgraf, M. Higuchi, R. Dieckmann, D.B. Barber, C.R. Pollock. J. Crys. Growth 165, 250 (1996).
- [10] В.Б. Дудникова, Е.В. Жариков, В.С. Урусов. ФТТ 52, 9, 1738 (2010).
- [11] В.Ф. Лебедев, А.В. Гайстер, С.Ю. Теняков, А.Е. Левченко, Е.М. Дианов, Е.В. Жариков. Квантовая электрон. 33, 3, 192 (2003).
- [12] K.R. Hoffman, J. Gasas-Gonzalez, S.M. Jacobsen, W.M. Yen. Phys. Rev. B 44, 22, 12 589 (1991).
- [13] V.F. Tarasov, G.S. Shakurov. Appl. Magn. Res. 2, 571 (1991).
- [14] D.E. Budil, D.G. Park, J.M. Burlitch, R.F. Geray, R. Dieckmann, J.H. Freed. J. Chem. Phys. 101, 5, 3538 (1994).
- [15] И.Д. Рябов, А.В. Гайстер, Е.В. Жариков. ФТТ 45, 1, 51 (2003).

- [16] С. Гешвинд. В сб.: Сверхтонкие взаимодействия в твердых телах / Под ред. А.Дж. Фриман, Р.Б. Франкел. Мир, М. (1970). 103 с.
- [17] M. Motokawa, H. Ohta, N. Makita, H. Ikeda. J. Phys. Soc. Jpn. 61, 1, 322 (1992).
- [18] В.Б. Дудникова, В.С. Урусов, Е.В. Жариков. Неорган. материалы 41, 6, 720 (2005).
- [19] I.D. Ryabov, A.V. Gaister, E.V. Zharikov. Modern Development of Magnetic Resonance. Abstracts of the Int. Conf. / Ed. K.M. Salikhov. Kazan (2004). P. 157.
- [20] А.А. Коновалов, В.Ф. Тарасов, В.Б. Дудникова, Е.В. Жариков. ФТТ, 51, 8, 1533 (2009).