05;12 Гистерезис частотно-полевых зависимостей и процессы перемагничивания в бариевом гексаферрите

© В.И. Костенко, А.М. Сорочак, Т.Г. Чамор, Л.В. Чевнюк

Киевский национальный университет имени Тараса Шевченко, 01033 Киев, Украина e-mail: ctamila@univ.kiev.ua, vikos@univ.kiev.ua

(Поступило в Редакцию 18 сентября 2007 г. В окончательной редакции 16 января 2008 г.)

Экспериментально исследован гистерезис частотно-полевых зависимостей ферромагнитного резонанса (ФМР) в области перехода с доменного в насыщенное состояние и обратно для эпитаксиальных пленок и пластинок бариевого гексаферрита при нормальном намагничивании. Проведено сравнение экспериментальных результатов с локальными петлями магнитного гистерезиса.

PACS: 75.60.-d, 75.70.-i, 76.50.+g

Введение

Существует большое количество работ, посвященных проблемам изучения магнитного гистерезиса в магнитоупорядоченных материалах [1–2], в частности, магнитный гистерезис в пленках гексаферритов исследовался в работах [3–5].

Исследованию пленок толщиной 40–80 μ m, выращенных методом жидкофазной эпитаксии на различных подложках, посвящена работа [4]. Наиболее узкая линия ферромагнитного резонанса (ФМР) 2 Δ H наблюдалась в пленке бариевого гексаферрита (ВаFe₁₂O₁₉), выращенной на подложке MgO, и составляла, приблизительно 30 Oe, а на гранатовых подложках 2 Δ H = 40–60 Oe. Коэрцитивное поле, измеренное по петлям гистерезиса, $H_k = 1.9$ kOe. В работе [5] проводились исследования статических петель гистерезиса для эпитаксиальных пленок гексаферрита бария толщиной 20–300 μ m, выращенных на подложках SiO₂/Si.

В работе [6] исследовался гистерезис для двойного слоя NiFe/MnNi, где сравнивались частотные зависимости ФМР и статические петли гистерезиса намагниченности. Здесь впервые был получен гистерезис частотно-полевой зависимости ФМР. Экспериментальные результаты хорошо согласуются с рассчитанными дисперсионными характеристиками.

В теоретической работе [7] разрабатывается методика численного моделирования процессов перемагничивания высокоанизотропных магнетиков с когерентно и некогерентно связанными магнитными дефектами различной формы и ширины, выступающими в роли центров зарождения доменов перемагничивания, а также теоретический анализ влияния магнитостатических полей на эти процессы.

Авторы [8] исследовали микроволновые и гистерезисные свойства двухсторонных пленок BaFe₁₂O₁₉, выращенных на подложках MgO. В этой работе был впервые получен гистерезис частотно-полевой зависимости ФМР, однако выращенный ферритовый шар не был монокристаллическим, а состоял из мелких чешуек монокристаллов.

Нами в работе [9] обнаружен и исследован гистерезис частотно-полевых зависимостей в тонких монокристаллических слоях бариевого гексаферрита при переходе образца из насыщенного состояния в доменное, однако измерения статических петель не проводились.

Предлагаемая работа посвящана дальнейшему изучению этого явления. В работе экспериментельно исследуется явление гистерезиса частотно-полевых зависимостей ФМР и сделано сопоставление с локальными петлями перемагничивания в пластинках объемных монокристаллов и эпитаксиальных пленках бариевого гексаферрита.

Теоретический анализ

Расчет разонансных кривых частотно-полевых зависимостей для случая плоскопараллельной доменной структуры (ППДС) проведен аналогично [10], а резонансных кривых в случае цилиндрической доменной структуры (ЦДС) в области полей $H_0 \leq H_{\text{sat}}$ проведен исходя из системы характеристических уравнений [11] для двух измеренных в эксперименте частотно-полевых зависимостей.

Для ветви насыщенного образца $\omega_0(H_0)$ расчет проводился по формуле:

$$\omega_0 = \gamma (H_a + H_0 - 4\pi M). \tag{1}$$

Расчет проведен с учетом параметров бариевого гексаферрита, для которого $H_a = 17$ kOe, M = 0.375 kGs [12]. Образцы эпитаксиальных пленок выращены методом жидкофазной эпитаксии на подложках из гексагаллата стронция (ГГС). Экспериментальные зависимости исследовались волноводной методикой с помощью панорамных измерителей КСВН Р2-68 и Р2-69.

Учитывая существенные различия в структурах объемных монокристаллов и эпитаксиальных пленок, исследования гистерезиса частотно-полевых зависимостей ФМР проводились в обеих структурах BaFe₁₂O₁₉ при разных толщинах ферритового слоя. В исходном состоянии в образцах создавались регуляризованные доменные структуры (ДС) определенного типа (ЦДС или ППДС).

Результаты и их обсуждение

На рис. 1 приведена зависимость резонансной частоты ω от внешнего магнитного поля (H_0) для эпитаксиальной пленки № 24–1 толщиной $t = 7 \, \mu m$, выращенной на подложке из ГГС толщиной $d = 460 \,\mu \text{m}$. В исходном состоянии в образце была создана ППДС. Экспериментальные точки хорошо ложатся на расчетную кривую как в доменной области, так и при насыщении. Незначительное расхождение в области насыщения связано, возможно, с несовпадением экспериментальных значений M и t с расчетными. Как видно, при обратном ходе Н₀, т.е. при изменении поля, соответствующем движению из области насыщения в доменную, наблюдается гистерезис ФМР, а переход в доменное состояние происходит не в поле насыщения H_{sat} , а в значительно меньшем поле — поле срыва H_{br}. В рамках существующей теории магнитостатических колебаний невозможно описать частотно-полевую зависимость резонансной кривой при уменьшении На в области перехода из насыщенного в доменное состояние. На рис. 2 показана аналогичная зависимость для монокристаллической пластины толщиной $t = 48 \,\mu m$. В исходном состоянии в образце также была создана ППДС. В этом случае расчетные и экспериментальные данные хорошо согласуются как для ω_1 , так и для ω_0 при прямом ходе H_0 , т.е. при его увеличении. При обратном ходе Н₀ в области полей $H_{\rm br} < H_0 < H_{\rm sat}$ образец остается однодоменным и только при H_{br} возникают и резко увеличиваются в объеме домены обратной намагниченности, а частота скачком изменяется более чем на 2 GHz, и образец переходит в многодоменное состояние. При этом H_{br} меньше H_{sat} на 1.2 kOe.

Сравнивая характер частотно-полевых зависимостей в эпитаксиальных пленках и объемных монокристаллах (рис. 1, 2) можно сделать вывод о существенных отличиях гистерезисных явлений в таких структурах. В эпитаксиальных пленках переход в многодоменное состояние почти всегда происходит плавно, а в объемных монокристаллах — скачкообразно. Это связано с тем, что эпитаксиальные пленки вследствие большого количества дефектов не являются односвязной магнитной областью, а состоят из отдельных блоков, переход в доменное состояние в которых происходит не одновременно [9], а при разных полях $H_{\rm br}$ из-за незначительного разброса магнитных параметров в каждом отдельном блоке. Для более качественных образцов эпитаксиальных пленок характер хода частотно-полевой зависимости в полях $H_0 < H_{\text{sat}}$ приближается к подобному в объемных монокристаллах. Учитывая это, можно

Рис. 1. Гистерзис частотно-полевой зависимости в эпитаксиальной пленке BaFe₁₂O₁₉, выращенной на подложке ГГС. Сплошные линии — расчет: ω_1 — согласно [10], ω_0 — по формуле (1). Кружочки — эксперимент при возрастании H_0 , треугольники — при уменьшнии H_0 .

Рис. 2. То же, что и на рис. 1, для монокристаллической пластинки BaFe₁₂O₁₉, $t = 48 \,\mu$ m, геометрические размеры $a \times b = 3.15 \times 2.95$ mm.

использовать особенности гистерезиса для определения качества эпитаксиальных пленок.

Для определения влияния типа ДС на гистерезисные свойства резонансных ветвей были проведены экспериментальные исследования частотно-полевых зависимостей и для ЦДС. Эксперименты проведены для случая, когда намагниченнось в доменах M_d была как параллельна внешнему полю ($H_0 \uparrow \uparrow M_d$), так и антипараллельна ($H_0 \uparrow \downarrow M_d$), для двух образцов объемных монокристалов различной толщины, в которых в исходном состоянии была создана регуляризованная ЦДС.

На рис. 3 приведена частотно-полевая зависимость для монокристаллического диска толщиной $t = 17 \mu$ m, диаметром 2.3 mm. Величина H_a определялась из (1). Аналогичные результаты получены и для монокристал-

Рис. 3. Гистерезис частотно-полевой зависимости в монокристаллическом диске BaFe₁₂O₁₉, $t = 17 \,\mu$ m, диаметром 2.3 mm с ЦДС. Сплошные линии — расчет: ω_1, ω_2 — согласно [11], ω_0 — по формуле (1). Кружочки — эксперимент при возрастании H_0 , треугольники — при уменьшении H_0 .

Рис. 4. Зависимость относительной намагниченности M/M_{sat} от поля намагничивания H_0 для монокристаллического диска BaFe₁₂O₁₉, $t = 17 \,\mu\text{m}$. Треугольники — эксперимент при возрастании H_0 , кружочки — при уменьшении H_0 .

лической пластинки, $t = 51 \,\mu$ m, $a \times b = 2.4 \times 1.8$ mm. В области полей $\mathbf{H_0} \uparrow \uparrow \mathbf{M_d}$ низкочастотная ветвь ω_1 переходит в ω_0 , а в области полей $\mathbf{H_0} \uparrow \downarrow \mathbf{M_d} - \omega_2$. Как видно из рисунка, гистерезис наблюдается как в области, когда внешнее поле параллельно намагниченности в доменах $\mathbf{H_0} \uparrow \uparrow \mathbf{M_d}$, так и при антипараллельной ориентации — $\mathbf{H_0} \uparrow \downarrow \mathbf{M_d}$. При этом характер перехода и основные параметры гистерезиса совпадают в обоих случаях. Интересно отметить, что величина $(H_{\text{sat}} - H_{\text{br}})$ в случае меньше $\mathbf{H_0} \uparrow \uparrow \mathbf{M_d}$, чем при $\mathbf{H_0} \uparrow \downarrow \mathbf{M_d}$.

Для проведения сравнительного анализа полученных экспериментальных зависимостей с локальными петлями перемагничивания эти же образцы были исследованы на магнитометре, основанном на эффекте Фарадея. На рис. 4 приведен участок петли перемагничивания для образца $BaFe_{12}O_{19}$, $t = 17 \,\mu m$, аналогичные зависимости наблюдаются и для образца $t = 51 \,\mu m$. Как видно, результаты статических исследований хорошо согласуются с высокочастотными измерениями для этих же образцов — при обратном ходе H_0 в поле H_{sat} не происходит зарождения ДС и образец остается однодоменным вплоть до поля срыва H_{br} , при котором скачком происходит разрушение однодоменного состояния и образуется доменная структура.

Заключение

Эксперментально и теоретически исследован гистерезис частотно-полевой зависимости магнитостатических спектров и проведено сопоставление этих данных с локальными петлями намагниченности в эпитаксиальных пленках и монокристаллических пластинках BaFe₁₂O₁₉.

Показано, что измеренные в обоих случаях величины полей срыва $H_{\rm br}$ совпадают. Предложено использовать характер и параметры перехода из насыщенного в доменное состояние мерой качества эпитаксиальных пленок.

Авторы выражают благодарность А.Ф. Лозенко за обсуждение полученных результатов и М.Г. Бабичу за помощь в проведении экспериментов.

Список литературы

- Lileeva A.S., Parilova A.A., Reissnerb M., Steinerb W. // J. Magn. Magn. Mater. 2004. Vol. 270. P. 152–156.
- [2] Lu Y.E., Song W.D. // Appl. Phys. Lett. 2000. Vol. 76. N 4. P. 490–492.
- [3] Song Y.-Y., Kalarickal S., Patton C. // J. Appl. Phys. 2003. Vol. 94. N 8. P. 5103–5110.
- [4] Yoon S.D., Vittoria C. // J. Appl. Phys. 2004. Vol. 96. N 4. P. 2131–2135.
- [5] Lisfi A., Lodder J.C., Williams C.M. // Appl. Phys. Lett. 2003.
 Vol. 83. N 4. P. 719-721.
- [6] Spenato D., Pogassian S.P. // J. Magn. Magn. Mater. 2005. Vol. 285. P. 79–87.
- [7] Еремин А.М., Манаков Н.А., Толстобров Ю.В. // Вест. Оренбургского гос. ун-та. 2006. Т. 2. № 2. С. 58-61.
- [8] Wang S.G., Yoon S.D., Vittoria C. // Appl. Phys. Lett. 2002. Vol. 92. N 11. P. 6728-6732.
- [9] Зависляк И.В., Костенко В.И., Чамор Т.Г., Чевнюк Л.В. // ЖТФ. 2005. Т. 75. Вып. 4. С. 128–130.
- [10] Kostenko V.L., Sigal M.A. // Phys. Stat. Sol (b). 1992. Vol. 170.
 P. 569-584.
- [11] Sigal M.A., Kostenko V.L. // Phys. Stat. Sol (b). 1991. Vol. 128.
 P. 219–234.
- [12] Handbook of microwave ferrite materials / Ed. by W.H. Aulock. New York-London: Academic Press, 1965. 518 p.